
Protecting online communication against
eavesdropping at the program level

Defence of PhD thesis “Information Flow Techniques for Mitigating Traffic Analysis”

Jeppe Fredsgaard Blaabjerg

Aarhus University

Advisor: Aslan Askarov

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Information hiding

2

Credit bicycling.com

http://bicycling.com

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Thesis

1. Mitigating traffic-analysis at the program level

a. Towards Language-Based Mitigation of Traffic Analysis Attacks
In Proceedings of the IEEE 34th Computer Security Foundations Symposium (CSF), 2021

b. OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads
In Proceedings of the IEEE 36th Computer Security Foundations Symposium (CSF), 2023

2. Precision of dynamic information-flow control

a. On precision of dynamic fine-grained information-flow control

3

Two research topics

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Thesis

1. Mitigating traffic-analysis at the program level

a. Towards Language-Based Mitigation of Traffic Analysis Attacks
In Proceedings of the IEEE 34th Computer Security Foundations Symposium (CSF), 2021

b. OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads
In Proceedings of the IEEE 36th Computer Security Foundations Symposium (CSF), 2023

2. Precision of dynamic information-flow control

a. On precision of dynamic fine-grained information-flow control

3

Two research topics

In this talk

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Traffic analysis
Example

4

TRANSFER(from: int, amount: int, to: int) {
if amount <= balance[from]
then {
balance[from] = balance[from] - amount;
balance[to] = balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Traffic analysis
Example

4

TRANSFER(from: int, amount: int, to: int) {
if amount <= balance[from]
then {
balance[from] = balance[from] - amount;
balance[to] = balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Traffic analysis
Example

4

TRANSFER(from: int, amount: int, to: int) {
if amount <= balance[from]
then {
balance[from] = balance[from] - amount;
balance[to] = balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Traffic analysis
Other observable properties of online communication

5

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Traffic analysis
Other observable properties of online communication

‣ Message timing

5

t6t5t4t3t2t1

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Traffic analysis
Other observable properties of online communication

‣ Message timing

‣ Message size

5

t6t5t4t3t2t1

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Traffic analysis
Other observable properties of online communication

‣ Message timing

‣ Message size

‣ Message recipient

5

t6t5t4t3t2t1

AliceBob

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Mitigating traffic analysis
Existing approaches: System-level mitigation

‣ Treat program as black-box

‣ Two main approaches

‣ Independent-link padding: Commonly, constant rate of fixed-size packets

‣ Dependent-link padding: Shape of outgoing traffic computed from the shape of incoming traffic

‣ Prohibitive overheads in practice: traffic or latency1

6

1 K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures
fail,” in 2012 IEEE symposium on security and privacy. IEEE, 2012, pp. 332–346
D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency -
choose two,” IACR Cryptology ePrint Archive, vol. 2017, p. 954, 2017.

Constant

Independent link padding Dependent link padding

f()

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Example
What is the right system-level bandwidth?

7

RELAY(x: int) {
if cnd
then send(FORWARD, x);
else skip;

}

‣ Traffic padding only needed if cnd is secret

‣ Not known at the system level

‣ Idea in my work: Use language-level techniques for mitigating traffic analysis

‣ How: Information-flow control

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Information-flow control
Background

‣ Label data with security levels drawn from a lattice

‣ Distinguished least level (public)

‣ Flows-to relation

- may learn data at level

‣ Join operation

- is the least level that both and may flow to

‣ -label to track the sensitivity of executing a particular command

ℓ
⊥

ℓ1 ⊑ ℓ2

ℓ2 ℓ1

ℓ1 ⊔ ℓ2 = ℓ3

ℓ3 ℓ1 ℓ2

pc

8

⊥ = ∅

{Alice} {Bob} {Carol}

{Alice, Bob} {Bob, Carol}{Alice, Carol}

{Alice, Bob, Carol}

Powerset lattice

OblivIO
Securing reactive programs by oblivious

execution with bounded traffic overheads

In Proceedings of the IEEE 36th Computer Security Foundations Symposium (CSF), 2023.

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
What must be protected?

10

<cfg />1

<cfg />2

‣ All network nodes run OblivIO

‣ Attacker may be network level only or may be another node

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
What must be protected?

10

<cfg />1

<cfg />2

‣ All network nodes run OblivIO

‣ Attacker may be network level only or may be another node

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
What must be protected?

10

<cfg />1

<cfg />2

Depend on secrets

‣ All network nodes run OblivIO

‣ Attacker may be network level only or may be another node

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
What must be protected?

10

<cfg />1

<cfg />2

Depend on secrets Independent of secrets

‣ All network nodes run OblivIO

‣ Attacker may be network level only or may be another node

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
OblivIO: Traffic padding guided by program source

11

<cfg />1

<cfg />2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
OblivIO: Traffic padding guided by program source

11

<cfg />1

<cfg />2

Real

Dummy

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

≈ℓadv

Mitigating traffic analysis
OblivIO: Traffic padding guided by program source

12

<cfg />1

<cfg />2

Real

Dummy

τ1

τ2

≈ℓadv

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Mitigating traffic analysis
OblivIO: Traffic padding guided by program source

13

Attacker knowledge2

k(cfg1, τ1, ℓadv) ≜ {cfg2 ∣ cfg1 ≈ℓadv
cfg2 ∧ cfg2 ⟶*τ2

cfg′ 2 ∧ τ1 ≈ℓadv
τ2}

Progress-sensitive noninterference (PSNI)

k(cfg1, τ1 ⋅ α1, ℓadv) ⊇ k(cfg1, τ1, ℓadv)

2 Askarov and A. Sabelfeld, “Gradual release: Unifying declassification, encryption and key release

policies,” 2007 IEEE Symposium on Security and Privacy.

≈ℓadv

<cfg />1

<cfg />2

τ1

τ2

≈ℓadv

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Simple imperative language for reactive programs

‣ Two execution modes: real and phantom

‣ Data-obliviousness3 — control-flow is never secret

‣ Formal model includes computational history for computing timestamp4

p ::= ⋅ ∣ ch(x){c}; p
c ::= 𝚜𝚔𝚒𝚙 ∣ c1; c2 ∣ x = e ∣ 𝚒𝚏 e 𝚝𝚑𝚎𝚗 c 𝚎𝚕𝚜𝚎 c ∣ 𝚠𝚑𝚒𝚕𝚎 e 𝚍𝚘 c ∣ 𝚜𝚎𝚗𝚍(ch, e)

∣ 𝚘𝚋𝚕𝚒𝚏 e 𝚝𝚑𝚎𝚗 c 𝚎𝚕𝚜𝚎 c
∣ x ?= e
∣ x ?= 𝚒𝚗𝚙𝚞𝚝(ch, e)

OblivIO
Language and syntax

14

(* Oblivious, padding assignment *)

(* Oblivious conditional — executes both branches *)

 (* Local input *)

3 S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious computation,” IACR Cryptol.
ePrint Arch., p. 1153, 2015. [Online]. Available: http://eprint.iacr.org/2015/1153
4 Daniel Hedin and David Sands. Timing aware information flow security for a javacard-like bytecode.
Electronic Notes in Theoretical Computer Science, 141 (1):163–182, 2005.

http://eprint.iacr.org/2015/1153

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Control flow

15

then else

oblif

0 :: b

0 :: 0 :: 0 :: b

0 :: 0 :: b

0 :: b

then else

oblif

1 :: b

b :: b′ :: 1 :: b

b′ :: 1 :: b

1 :: b

b ≠ b′

Oblivious conditional

Real Phantom

 is a stack of execution mode bits
 denotes real mode
 denotes phantom mode

b b
b = 1
b = 0

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Assignment

16

Oblivious assignment

x ?= “Hello”;

1 :: b, x ↦ ("Goodbye")7

1 :: b, x ↦ ("Hello")7

x ?= “Goodbye”;

0 :: b, x ↦ ("Hello")5

0 :: b, x ↦ ("Hello")7

Real Phantom

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Sending

17

Send

send(ch,x);

1 :: b, x ↦ (v)z

1 :: b, x ↦ (v)z

⇝ ch1((v)z) send(ch,x);

0 :: b, x ↦ (v)z

0 :: b, x ↦ (v)z

⇝ ch0((v)z)

Real Phantom

Dummy

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Intro example in OblivIO

18

TRANSFER(from: int, amount: int, to: int) {
oblif amount <= balance[from]
then {
balance[from] ?= balance[from] - amount;
balance[to] ?= balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Intro example in OblivIO

18

TRANSFER(from: int, amount: int, to: int) {
oblif amount <= balance[from]
then {
balance[from] ?= balance[from] - amount;
balance[to] ?= balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Intro example in OblivIO

18

TRANSFER(from: int, amount: int, to: int) {
oblif amount <= balance[from]
then {
balance[from] ?= balance[from] - amount;
balance[to] ?= balance[to] + amount;

}
else send(ALICE, “ERROR!”);

}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Part a

19

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Part a

19

Public guard
Non-public guard

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Part a

19

Public guard
Non-public guard

Public pc Any pc

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Part a

19

Public guard
Non-public guard

Public pc Any pc

Soundness Theorem:
Well-typed OblivIO programs do not leak by

their traffic patterns

k(cfg, τ ⋅ α, ℓadv) ⊇ k(cfg, τ, ℓadv)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

20

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PING1(1)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

20

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PING1(1)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

21

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(0)
PONG1(1)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

21

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(0)
PONG1(1)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

22

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(0)
PING0(0)
PING1(1)

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

23

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG1(1)
PONG0(0)

⋮
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)

⋮

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Secure, but at what cost…
A pitfall of oblivious execution

23

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG1(1)
PONG0(0)

⋮
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)

⋮

Idea:
Statically restrict the amount of
dummy traffic produced by a program

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Restricting the amount of dummy traffic
Resource awareness5

‣ Declare integer potential of a handler

‣ Spend potential when sending obliviously

‣ Oblivious send on channel with potential costs

- to pay for the message itself

- to pay for the potential of the handler

‣ Instrument typing judgements with potentials

q

q 1 + q
1
q

24

5 J. Hoffmann and M. Hofmann, “Amortized resource analysis with polynomial potential,” in European
Symposium on Programming. Springer, 2010, pp. 287–306.

J. Hoffmann, K. Aehlig, and M. Hofmann, “Resource aware ml,” in International Conference on Computer
Aided Verification. Springer, 2012, pp. 781–786.

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Adding potentials

25

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Adding potentials

26

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Adding potentials

26

Overhead Theorem:
‣ Given

‣ (System-wide) OblivIO trace

‣ (System-wide) Unpadded trace

- Without dummy messages

‣ Then

‣

τ1

τ2

|τ1 | ≤ |τ2 | * c

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Example
Example revisited

27

PINGH $N (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

PONGH $M (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

$M 2+2*$N≥$N 2+2*$M≥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Example: Round auction

28

var max_bid: intH = 432;

AUCTION_STATUSL $1 (name: stringH, bid: intH) {
 oblif bid < max_bid && name != "Alice"
 then send(AUCTIONHOUSE/BID, ("Alice", bid + 1));
 else skip;
}

AUCTION_OVERL $0 (winner: stringH, winning_bid: intH) {
 ...
}

ALICE

var round_counter: intL = 500;
var leader: stringH = "";
var leading_bid: intH = 0;

BIDH $0 (name: stringH, bid: intH) {
 oblif leading_bid < bid
 then {
 leader ?= name;
 leading_bid ?= bid;
 }
 else skip;
}

TICKL $0 (dmy: intL) {
 if round_counter > 0
 then {
 round_counter = round_counter - 1;
 send(AUCTIONTIMER/BEGIN, 2000);
 ... // send AUCTION_STATUS to all users

} else {
 ... // send AUCTION_OVER to all users
}

}

AUCTIONHOUSE

var c: intL = 0;

BEGINL $0 (i: intL) {
 c = i;
 while (c > 0) do {
 c = c - 1;
 }
 send(AUCTIONHOUSE/TICK, 0);
}

AUCTIONTIMER

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

29

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

‣ Events are network messages only

‣ Cannot react to events with secret presence

29

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

‣ Events are network messages only

‣ Cannot react to events with secret presence

‣ Constant-time implementation of all operations

29

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

‣ Events are network messages only

‣ Cannot react to events with secret presence

‣ Constant-time implementation of all operations

‣ Programs are static

‣ No dynamically registered handlers

‣ Functions not first-class

29

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

‣ Events are network messages only

‣ Cannot react to events with secret presence

‣ Constant-time implementation of all operations

‣ Programs are static

‣ No dynamically registered handlers

‣ Functions not first-class

‣ Channels not first-class

29

oblif secret
then ch ?= ALICE/GREET;
else ch ?= BOB/GREET;
send(ch,”Hello");

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Conclusion
OblivIO Takeaways

‣ Secures reactive programs by oblivious execution

‣ Well-typed programs do not leak by their traffic pattern (Soundness theorem)

‣ Bounds the traffic overhead produced by the enforcement

‣ Every real message generates at most dummy messages (Overhead theorem)c

30

Message presence
Sending dummy messages

under phantom mode

Message timing
Constant-time execution

through data-obliviousness

Message size
Padding value size at
oblivious assignments

Message recipient
Channels are given in

program text

How OblivIO secures observable properties of communication:

IFC Precision
On precision of dynamic fine-grained

information-flow control

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Many popular web-languages are dynamic, e.g., JavaScript and Python

‣ Dynamic enforcement via runtime monitor allows for precise reasoning

‣ Monitors are typically fail-safe and termination-insensitive

‣ Stop program execution before insecure action

‣ Two approaches to monitors, both use security labels

‣ Fine-grained: track labels on values

‣ Coarse-grained: track labels on computation

Dynamic information flow control
Motivation and background

32

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Fine-grained IFC

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

33

if x
then 1
else 2

→ 1{Alice}

pc = ⊥

pc = {Alice}

pc = ⊥

Coarse-grained IFC

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Computation has a floating-label pc

Fine-grained IFC

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

33

if x
then 1
else 2

→ 1{Alice}

pc = ⊥

pc = {Alice}

pc = ⊥

Coarse-grained IFC

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Computation has a floating-label pc
‣ Values are not labelled

‣ Secrets are boxed with a label and
require unboxing before being used

Fine-grained IFC

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

33

if x
then 1
else 2

→ 1{Alice}

pc = ⊥

pc = {Alice}

pc = ⊥

m = [x ↦ 5 {Alice}]

Coarse-grained IFC

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Computation has a floating-label pc
‣ Values are not labelled

‣ Secrets are boxed with a label and
require unboxing before being used

Fine-grained IFC

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

33

if x
then 1
else 2

→ 1{Alice}

pc = ⊥

pc = {Alice}

pc = ⊥

m = [x ↦ 5 {Alice}]

if x
then 1
else 2

Cannot access boxed value

Coarse-grained IFC

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

pc = {Alice}

‣ Computation has a floating-label

‣ Values are not labelled

‣ Secrets are boxed with a label and
require unboxing before being used

pc

pc = ⊥

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

34

m = [x ↦ 5 {Alice}, x′ ↦ 5]

let x' = unlabel x in
if x’
then 1
else 2

if x
then 1
else 2

→ 1{Alice}

Fine-grained IFC Coarse-grained IFC

Raises floating-label

pc = ⊥

pc = {Alice}

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

pc = {Alice}

pc = ⊥

‣ Computation has a floating-label

‣ Values are not labelled

‣ Secrets are boxed with a label and
require unboxing before being used

pc

pc = ⊥

‣ All values are intrinsically labelled

‣ -label tracks sensitivity of executing a
particular command

vℓ

m = [x ↦ 5{Alice}, y ↦ 7⊥]
x + y → 5{Alice} + 7⊥ → (5 + 7){Alice}⊔⊥ → 12{Alice}

pc

34

m = [x ↦ 5 {Alice}, x′ ↦ 5]

let x' = unlabel x in
if x’
then 1
else 2

if x
then 1
else 2

→ 1{Alice}

Fine-grained IFC Coarse-grained IFC

Raises floating-label

Provides computational scope toLabeled(

)

pc = ⊥

pc = {Alice}

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Assumptions

1. Termination-insensitive security

2. Programs are well-typed (in a
security unaware way)

3. The fine-grained calculus is standard

‣ Formal setup: Two calculi

‣ Fine- and coarse-grained

‣ Theorem: The two calculi are equally
expressive

‣ Shown by a pair of semantic
preserving translations

35

Fine-grained IFC Coarse-grained IFC
Vassena et al. [POPL19]: fine- and coarse-grained dynamic IFC are equally expressive

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Lifting the assumption

36

‣ Novel fine-grained IFC techniques for cases where the assumptions do not hold

1. Disjunctive precision (Novel fine-grained semantics, PSNI)

2. Refinement labels (Dynamically typed, PSNI)

‣ We show that the techniques have no translation to coarse-grained IFC

‣ Fine- and coarse-grained dynamic IFC are not equivalent

What is this work about?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Results are tainted by the sensitivity of both operands

m = [x ↦ 5{Alice}, y ↦ 0⊥]
x * y → 5{Alice} * 0⊥ → (5 * 0){Alice}⊔⊥ → 0{Alice}

Disjunctive precision
Standard expression semantics

37

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Results are tainted by the sensitivity of both operands

m = [x ↦ 5{Alice}, y ↦ 0⊥]
x * y → 5{Alice} * 0⊥ → (5 * 0){Alice}⊔⊥ → 0{Alice}

‣ Does this result actually depend on the value of ?x

Disjunctive precision
Standard expression semantics

37

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Results are tainted by the sensitivity of both operands

m = [x ↦ 5{Alice}, y ↦ 0⊥]
x * y → 5{Alice} * 0⊥ → (5 * 0){Alice}⊔⊥ → 0{Alice}

‣ Does this result actually depend on the value of ?x

Disjunctive precision
Standard expression semantics

37

Semantics lacks precision

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]

Disjunctive precision
Precise expression semantics

38

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

x*z ?→ 0{Bob}pc = ⊥

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

x*z ?→ 0{Bob}pc = ⊥

pc = ⊥

Not safe!

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

x*z ?→ 0{Bob}pc = ⊥

pc = ⊥

Results must have same label5{Alice} * 0{Bob}

0{Alice} * 0{Bob}

0{Alice} * 5{Bob}

Not safe!

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

x*z ?→ 0{Bob}pc = ⊥

pc = ⊥

Results must have same label5{Alice} * 0{Bob}

0{Alice} * 0{Bob}

0{Alice} * 5{Bob}
→ 0{Alice,Bob}

Not safe!

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations n x1 ⊕ x2

‣ Precise multiplication if either or is zerox1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]
‣ Trivial case

‣ Non-trivial case?

Disjunctive precision
Precise expression semantics

38

x*y → 0⊥pc = ⊥

pc = ⊥

x*z ?→ 0{Bob}pc = ⊥

pc = ⊥

Results must have same label5{Alice} * 0{Bob}

0{Alice} * 0{Bob}

0{Alice} * 5{Bob}
→ 0{Alice,Bob}

Not safe!

No non-trivial cases?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations

‣ Precise multiplication if either or is zero

‣ Trivial case

‣ Non-trivial case

n x1 ⊕ x2

x1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]

Disjunctive precision
Precise expression semantics

39

x*y → 0⊥pc = ⊥

pc = ⊥

x*z → 0{Bob}pc = {Bob}

pc = {Bob}
Precise if pc = {Bob}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Integer values and binary operations

‣ Precise multiplication if either or is zero

‣ Trivial case

‣ Non-trivial case

n x1 ⊕ x2

x1 x2

m = [x ↦ 5{Alice}, y ↦ 0⊥, z ↦ 0{Bob}]

Disjunctive precision
Precise expression semantics

39

x*y → 0⊥pc = ⊥

pc = ⊥

x*z → 0{Bob}pc = {Bob}

pc = {Bob}

5{Alice} * 0{Bob}

0{Alice} * 0{Bob}}
0{Alice} * 5{Bob} → 0{Alice,Bob}

→ 0{Bob}
Precise if pc = {Bob}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard PSNI in a dynamically-typed setting

40

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard PSNI in a dynamically-typed setting

40

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

Does the following program satisfy PSNI?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard PSNI in a dynamically-typed setting

40

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

a is always an integer
Does the following program satisfy PSNI?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard PSNI in a dynamically-typed setting

40

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

a is always an integer

output is always reachable

Does the following program satisfy PSNI?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard PSNI in a dynamically-typed setting

40

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

a is always an integer

output is always reachable

Program satisfies PSNI!

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard IFC monitors lacks precision

41

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

pc = ⊥

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard IFC monitors lacks precision

41

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

pc = ⊥

a is labelled {Alice}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard IFC monitors lacks precision

41

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

pc = ⊥

Addition may fail so is tainted
by the label of its operands

pc

pc = {Alice}

a is labelled {Alice}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Setup: Unit value and integer values and
ternary conditional operator

() n
x ? x1 : x2

m = [x ↦ 5{Alice}, y ↦ 42⊥, z ↦ 84⊥, w ↦ ()⊥]
x ? y : z → 5{Alice} ? 42⊥ : 84⊥ → 42{Alice}

Refinement labels*
Standard IFC monitors lacks precision

41

let a = x ? y : z
 b = a + 1 (* dynamic type error if a is unit *)

in output(, ”Done!”)⊥

pc = ⊥

Addition may fail so is tainted
by the label of its operands

pc

pc = {Alice}

Public side-effect when pc = {Alice}

a is labelled {Alice}

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

Refinement labels*
Tracking the sensitivity of types

42

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

Refinement labels*
Tracking the sensitivity of types

42

Value label

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

Refinement labels*
Tracking the sensitivity of types

42

Value label Type label

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

Refinement labels*
Tracking the sensitivity of types

42

Always the case that ℓt ⊑ ℓv

Value label Type label

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

Always the case that ℓt ⊑ ℓv

Value label Type label

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84 since {Alice} 42 ≠ 84

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84 since {Alice} 42 ≠ 84

Public that a is integer
and operation succeeds

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84 since {Alice} 42 ≠ 84

pc = ⊥
Public that a is integer

and operation succeeds

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84 since {Alice} 42 ≠ 84

pc = ⊥

Success!

Public that a is integer
and operation succeeds

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Two-label approach: vℓv/ℓt

m = [x ↦ 5{Alice}/⊥, y ↦ 42⊥/⊥, z ↦ 84⊥/⊥, w ↦ ()⊥/⊥]

Refinement labels*
Tracking the sensitivity of types

42

let a = x ? y : z
 b = a + 1

in output(, ”Done!”)

→ 42{Alice}/⊥

⊥

pc = ⊥

Always the case that ℓt ⊑ ℓv

Value label Type label

 since ⊥ 42 type= 84 since {Alice} 42 ≠ 84

pc = ⊥

ℓv = {ℓv
i ⊔ ℓt ⊔ pc if v1 = v2 ∧ pc ⊔ ℓv

1 = pc ⊔ ℓv
2

ℓv
x ⊔ ℓv

i ⊔ ℓt ⊔ pc otherwise

ℓt = {ℓt
i ⊔ pc if v1

type= v2 ∧ pc ⊔ ℓt
1 = pc ⊔ ℓt

2

ℓv
x ⊔ ℓt

i ⊔ pc otherwise

Non-trivial cases of x ? x1 : x2

Success!

* Semantics of makes use of disjunctive precisionx ? x1 : x2

Public that a is integer
and operation succeeds

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Fine-grained IFC

43

Coarse-grained IFC

Translation ⟦ ⟧ ⋅
Values
Memories
Expressions

v
m

e

Translated values ⟦ ⟧

Translated memories ⟦ ⟧

Translated expressions ⟦ ⟧

v
m

e

?Our

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Fine-grained IFC

43

Coarse-grained IFC

Translation ⟦ ⟧ ⋅
Values
Memories
Expressions

v
m

e

Translated values ⟦ ⟧

Translated memories ⟦ ⟧

Translated expressions ⟦ ⟧

v
m

e
How can we show that no ⟦ ⟧ exists?⋅

?Our

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Fine-grained IFC

43

Coarse-grained IFC

‣ Translation ⟦ ⟧

‣ Source language: Fine-grained calculus with disjunctive precision

‣ Target language: Sequential coarse-grained calculus for PSNI

‣ Cannot use for PSNI [Stefan et al., ICFP’12]

‣ Modify the coarse-grained calculus of Vassena et al. [POPL19]

‣ Replace with

‣ Add integer values and binary expressions

⋅

toLabeled

toLabeled label
n e1 ⊕ e2

Translation ⟦ ⟧ ⋅
Values
Memories
Expressions

v
m

e

Translated values ⟦ ⟧

Translated memories ⟦ ⟧

Translated expressions ⟦ ⟧

v
m

e
How can we show that no ⟦ ⟧ exists?⋅

?Our

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Fine-grained IFC

43

Coarse-grained IFC

‣ Translation ⟦ ⟧

‣ Source language: Fine-grained calculus with disjunctive precision

‣ Target language: Sequential coarse-grained calculus for PSNI

‣ Cannot use for PSNI [Stefan et al., ICFP’12]

‣ Modify the coarse-grained calculus of Vassena et al. [POPL19]

‣ Replace with

‣ Add integer values and binary expressions

⋅

toLabeled

toLabeled label
n e1 ⊕ e2

Does not restore floating-label after evaluation

Translation ⟦ ⟧ ⋅
Values
Memories
Expressions

v
m

e

Translated values ⟦ ⟧

Translated memories ⟦ ⟧

Translated expressions ⟦ ⟧

v
m

e
How can we show that no ⟦ ⟧ exists?⋅

?Our

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ What does the translation ⟦ ⟧ look like?

‣ On values: ⟦ ⟧

‣ On memories: ⟦ ⟧

‣ On expressions: ⟦ ⟧

⋅

v

m

e

Translating disjunctive precision
Proof strategy

44

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ What does the translation ⟦ ⟧ look like?

‣ On values: ⟦ ⟧

‣ On memories: ⟦ ⟧

‣ On expressions: ⟦ ⟧

⋅

v

m

e

Translating disjunctive precision
Proof strategy

44

Could in principle have any shape

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ What does the translation ⟦ ⟧ look like?

‣ On values: ⟦ ⟧

‣ On memories: ⟦ ⟧

‣ On expressions: ⟦ ⟧

⋅

v

m

e

‣ Strategy: Define 4 properties that translations must satisfy

Translating disjunctive precision
Proof strategy

44

Could in principle have any shape

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 2: Translation of values

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 ?= (λx . e, m)

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 . . .
 ?= (λx . e, m)

Translating disjunctive precision

45

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 . . .
 ?= (λx . e, m)

Translating disjunctive precision

45

v ℓ1
1

…

v ℓk
k

⟦ ⟧nℓ

⟦ ⟧n
Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values
What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 . . .
 ?= (λx . e, m)

Translating disjunctive precision

45

v ℓ1
1

…

v ℓk
k

⟦ ⟧nℓ

⟦ ⟧n

If there is a path from ⟦ ⟧ to ⟦ ⟧ and if

 is the least sensitive
boxing along any such path, we say that
⟦ ⟧ is included in ⟦ ⟧ under label

nℓ n
ℓ′ = ℓ1 ⊔ … ⊔ ℓk

n nℓ ℓ′

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values

‣ ⟦ ⟧ is included in ⟦ ⟧ under label n nℓ ℓ

What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 . . .
 ?= (λx . e, m)

Translating disjunctive precision

45

v ℓ1
1

…

v ℓk
k

⟦ ⟧nℓ

⟦ ⟧n

If there is a path from ⟦ ⟧ to ⟦ ⟧ and if

 is the least sensitive
boxing along any such path, we say that
⟦ ⟧ is included in ⟦ ⟧ under label

nℓ n
ℓ′ = ℓ1 ⊔ … ⊔ ℓk

n nℓ ℓ′

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

 ?= (42, n ℓ)

Property 2: Translation of values

‣ ⟦ ⟧ is included in ⟦ ⟧ under label n nℓ ℓ

What does ⟦ ⟧ look like?nℓ

⟦ ⟧ ?nℓ = n ℓ

 . . .
Property 3: Translation of memories

‣ Point-wise, i.e., ⟦ ⟧ ⟦ ⟧m = λx . m(x)

 ?= (λx . e, m)

Translating disjunctive precision

45

v ℓ1
1

…

v ℓk
k

⟦ ⟧nℓ

⟦ ⟧n

If there is a path from ⟦ ⟧ to ⟦ ⟧ and if

 is the least sensitive
boxing along any such path, we say that
⟦ ⟧ is included in ⟦ ⟧ under label

nℓ n
ℓ′ = ℓ1 ⊔ … ⊔ ℓk

n nℓ ℓ′

Property 1: Semantics preserving

‣ If

‣ Then ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟨pc, e⟩ ⇓m ⟨pc′ , v⟩
⟨ m , pc, e ⟩ ⟶* ⟨m′ , pc′ , v ⟩

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

Translating disjunctive precision

46

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

Translating disjunctive precision

46

What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

‣ The values of the operands are necessary for computing the result

Translating disjunctive precision

46

What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

‣ The values of the operands are necessary for computing the result

Translating disjunctive precision

46

v′ i
ℓ′ i

…

v′ ′ i
ℓ′ ′ i

⟦ ⟧nℓi
i

⟦ ⟧ni

Translation of nℓi
i

m = [x1 ↦ nℓ1
1 , x2 ↦ nℓ2

2]What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

‣ The values of the operands are necessary for computing the result

Translating disjunctive precision

46

v′ i
ℓ′ i

…

v′ ′ i
ℓ′ ′ i

⟦ ⟧nℓi
i

⟦ ⟧ni

Translation of nℓi
i

Recursively unlabels ⟦ ⟧ from ⟦ ⟧ni nℓi
i

m = [x1 ↦ nℓ1
1 , x2 ↦ nℓ2

2]What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

‣ The values of the operands are necessary for computing the result

Translating disjunctive precision

46

v′ i
ℓ′ i

…

v′ ′ i
ℓ′ ′ i

⟦ ⟧nℓi
i

⟦ ⟧ni

Translation of nℓi
i

Recursively unlabels ⟦ ⟧ from ⟦ ⟧ni nℓi
i

⟶* ⟨m′ ′ , pc′ ′ , unlabel(v′ ′ i
ℓ′ ′ i)⟩

⟦ ⟧ ⟦ ⟧⟨ m , pc, x1 ⊕ x2 ⟩ ⟶* ⟨m′ , pc′ , unlabel(v′ i
ℓ′ i)⟩

…

⟶* c′

m = [x1 ↦ nℓ1
1 , x2 ↦ nℓ2

2]What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Property 4: Translation of binary operations

‣ The values of the operands are necessary for computing the result

Translating disjunctive precision

46

v′ i
ℓ′ i

…

v′ ′ i
ℓ′ ′ i

⟦ ⟧nℓi
i

⟦ ⟧ni

Translation of nℓi
i

Recursively unlabels ⟦ ⟧ from ⟦ ⟧ni nℓi
i

⟶* ⟨m′ ′ , pc′ ′ , unlabel(v′ ′ i
ℓ′ ′ i)⟩

⟦ ⟧ ⟦ ⟧⟨ m , pc, x1 ⊕ x2 ⟩ ⟶* ⟨m′ , pc′ , unlabel(v′ i
ℓ′ i)⟩

…

⟶* c′

m = [x1 ↦ nℓ1
1 , x2 ↦ nℓ2

2]

Impossibility Theorem:
No translation ⟦ ⟧ satisfies

Properties 1, 2, 3, 4.
⋅

What does ⟦ ⟧ look like?x1 ⊕ x2

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Why this coarse-grained calculus?

‣ Why translate to sequential coarse-grained for PSNI?

47

What about other calculi?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Why this coarse-grained calculus?

‣ Why translate to sequential coarse-grained for PSNI?

‣ To reason about taint from unlabelling

47

let _ = toLabeled(unlabel(x)) in
let _ = toLabeled(unlabel(y)) in
e

Example translation of fine-grained program (TINI)x + y

What about other calculi?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Why this coarse-grained calculus?

‣ Why translate to sequential coarse-grained for PSNI?

‣ To reason about taint from unlabelling

‣ What do we think for translating to sequential coarse-
grained for TINI or concurrent coarse-grained for PSNI
[Stefan et al., ICFP’12]?

47

let _ = toLabeled(unlabel(x)) in
let _ = toLabeled(unlabel(y)) in
e

Example translation of fine-grained program (TINI)x + y

What about other calculi?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Why this coarse-grained calculus?

‣ Why translate to sequential coarse-grained for PSNI?

‣ To reason about taint from unlabelling

‣ What do we think for translating to sequential coarse-
grained for TINI or concurrent coarse-grained for PSNI
[Stefan et al., ICFP’12]?

‣ Conjecture: Translating disjunctive precision is impossible

47

let _ = toLabeled(unlabel(x)) in
let _ = toLabeled(unlabel(y)) in
e

Example translation of fine-grained program (TINI)x + y

Cannot inspect boxed values or their
labels without tainting floating-label

What about other calculi?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Why this coarse-grained calculus?

‣ Why translate to sequential coarse-grained for PSNI?

‣ To reason about taint from unlabelling

‣ What do we think for translating to sequential coarse-
grained for TINI or concurrent coarse-grained for PSNI
[Stefan et al., ICFP’12]?

‣ Conjecture: Translating disjunctive precision is impossible

‣ Translation of refinement labels may be possible*

47

let _ = toLabeled(unlabel(x)) in
let _ = toLabeled(unlabel(y)) in
e

Example translation of fine-grained program (TINI)x + y

Cannot inspect boxed values or their
labels without tainting floating-label

* Semantics of makes use of disjunctive precisionx ? x1 : x2

Scope each sensitive computation by
/toLabeled fork

What about other calculi?

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Conclusion
Takeaway: Fine- and coarse-grained dynamic IFC are not equally expressive

‣ Coarse-grained IFC cannot do disjunctive reasoning

‣ Operations specialised using fine-grained information

‣ Refinement labels improve the precision of fine-grained dynamic IFC

‣ Main refinement example: types

‣ Other possible refinements: aliasing, semantic equivalence, predicates (e.g., isEven/isOdd)

48

Conclusion / Future work

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Conclusion

‣ We can mitigate traffic analysis effectively using language-level techniques

‣ Language design + runtime makes enforcement more permissive

‣ Type-system bounds the traffic overhead

‣ Fine- and coarse-grained dynamic IFC are not equally expressive

‣ Coarse-grained IFC cannot do disjunctive reasoning

‣ Refinement labels improve the precision of fine-grained dynamic IFC

50

Information Flow Techniques for Mitigating Traffic Analysis Jeppe Fredsgaard Blaabjerg, Aarhus University

Future work

‣ Traffic analysis

‣ Language features not supported by OblivIO

- Bounding leaks from features that cannot be supported natively

‣ Large design space, relatively little explored

‣ Dynamic fine-grained precision

‣ Explore techniques where fine-grained reasoning can be applied

- Other instances where disjunctive reasoning can apply

‣ Prove the impossibility conjectures for translations to TINI/Concurrent PSNI

51

