
Short Paper: Differential fuzzing of constant-time packages in
JavaScript

Jeppe Fredsgaard Blaabjerg
jfblaa@cs.au.dk

Aarhus University

ABSTRACT
Timing-channels enable attackers to learn secret program data
by observing the execution time of a program. Formally reasoning
about timing-channels is difficult as accurately modelling the execu-
tion time involves correlating multiple program paths and requires
extensive knowledge of source language, compilation steps, and
hardware. Differential fuzzing promises an automatic way of discov-
ering timing-channel following a general methodology that can be
applied to programs written in any language. We test this promise
by developing JsDifFuzz, a differential fuzzing tool for JavaScript.
We use JsDifFuzz to evaluate JavaScript libraries for constant-time
comparison, by generating input that maximises the wall-clock tim-
ing difference between executions. We evaluate examples from the
literature and find that JsDifFuzz discovers timing-channels missed
by other tools. We find that many of the libraries analysed are near
constant-time for fixed-size input, but display timing-channels if
input size is not known. We find that branch-prediction poses a
challenge for using wall-clock time to guide the fuzzing.

1 INTRODUCTION
Timing-channels pose a significant security risk for a wide range
of applications. The problem is exacerbated by the difficulty in for-
mally reasoning about timing-channels, requiring highly detailed
modelling of the runtime behaviour of programs. Nilizadeh et al. [5]
introduce differential fuzzing, an automatic and general methodol-
ogy for detecting side-channel in programs written in any language.
The authors demonstrate the approach by an implementation that
targets analysis of Java programs, however arguing that the method-
ology is general and could be used for programs written in any
language. Their tool approximates the execution time of a program
by counting byte-code instructions. The authors argue that this
provides a good approximation of the actual execution time, not
impacted by garbage collection and other processes running on the
same machine. However, this simple modelling of time is not accu-
rate in practice, where control-flow branches and cache behaviour
influence execution time [4]. Furthermore, garbage collection can
provide an exploitable side-channel [8] and is therefore beneficial
to include in an analysis.

We test the claim that differential fuzzing can be applied to
programs written in any language by developing JsDifFuzz, a dif-
ferential fuzzing tool for JavaScript. JsDifFuzz uses high-precision
timers high-precision timers available in Nodejs to measure the
wall-clock execution time of programs. Like DifFuzz, we imple-
ment JsDifFuzz as a coverage- and timing-guided fuzzer. Coverage-
guided fuzzing provides the fuzzing tool with information on how
many lines of code, branches, or program paths were covered dur-
ing execution. This feedback can be used when generating new
input. Timing-guided fuzzing follows the same basic principle. We

instrument JsDifFuzz with a scoring metric for the difference in
execution time between runs and let new input be generated from
the highest scoring inputs.

Differential fuzzing is particularly suitable for detecting when a
program does not satisfy non-interference. Non-interference loosely
is the condition that secret inputs do not affect public outputs.
JsDifFuzz generates a public input pub and two secret inputs sec1
and sec2. We then analyse target program 𝑝 that computes over
public and secret input arguments by measuring the difference in
time between executions using the two different secret inputs:

maximize:
pub,sec1,sec2

𝛿 = |time(𝑝 (pub, sec1)) − time(𝑝 (pub, sec2)) |.

We consider execution time, and thus timing difference, to be public
output.

2 IMPLEMENTATION
Wedevelop JsDifFuzz by heavily customising the JavaScript fuzzing
tool Jsfuzz [3]. This enables us to utilise the existing infrastructure
for coverage-guided fuzzing. As noted byNilizadeh et al. [5], scoring
the execution time of programs by measuring the wall-clock time
makes the scoring unstable. To address this issue, we run target
programs multiple times on each input and take the minimum
score over all executions. Intuitively, an input may be assigned an
artificially high a score if to garbage collection or other processes
running on the same machine slow down one of the two runs. Thus,
by taking the minimum over multiple executions we hope that at
least one run using bad input will give an accurate score at which
point the bad input may be discarded.

To improve input generation, we further modify JsDifFuzz to
be an evolutionary fuzzer. Evolutionary fuzzers partition inputs
into generations and uses the highest scoring input from genera-
tion 𝑘 when creating the input for generation 𝑘 + 1. This change
significantly improves the performance of the fuzzer, by enabling
information to be passed on from one generation to the next. We
further explore the idea of evolutionary fuzzing by letting new
input be generated from two parent inputs. If two high-scoring
inputs 𝑎 and 𝑏 agree on input sizes or sequences in their data, we
can exploit this agreement by using shared data as the basis for new
input 𝑐 , using random values where 𝑎 and 𝑏 disagree. The exact
parameters for generation size and number of survivors from one
generation to the next were heuristically chosen.

We let input be given by an array of JavaScript buffers and let
the number of buffers needed be specified by wrappers for each
target program. This allows buffers to have different sizes, a feature
not present in DifFuzz, enabling us to investigates leaks through
size. The benefit of this is shown the next section.

Jeppe Fredsgaard Blaabjerg

3 EVALUATION
Weevaluate JsDifFuzz on a range of JavaScript packages for constant-
time string and buffer comparison available via the Node Package
Manager (NPM) [6]. We additionally analyse built-in comparison
functions and examples analysed by DifFuzz [5]. Figure 1 shows
our findings. Each test ran for 30 minutes on a MacBookPro14.3,
Quad-Core Intel Core i7 2.8 GHz, 16 GB RAM, macOS v11.6. JsD-
ifFuzz generated input consisting of three buffers and scored the
input in accordance with the scheme outlined in Section 1. We per-
form two evaluations of each target program, one where the size of
each buffer was less than or equal to 512 and one where the size of
each buffer was 512. Columns 2 and 4 show the average difference
in time between executions varying in their secret arguments for
the final generation of inputs.

Benchmark Size ≤ 512 Size = 512
Avg. 𝛿 Std.Err. Avg. 𝛿 Std.Err.

Constant-time packages
bcrypt 407.0 104.55 309.2 66.38
buffer-equal-constant-time 5065.2 18.19 353.9 133.13
compare-timing-safe 943.8 24.89 113.1 8.39
immutable-tuple 2.4 0.21 2.3 0.35
safe-compare 193.3 3.59 32.3 3.84
scmp 113.2 0.31 1.6 0.25
secure-compare-native 4.9 0.22 1.8 0.28
secure-compare 56.5 6.27 231.1 133.86
tsscmp 1434.8 11.91 91.2 5.91
tsse 653.5 1.31 13.6 0.85
Nodejs built-in
Buffer.equals 54.9 0.30 6.7 0.55
crypto.timingSafeEquals - - 1.8 0.13
String.localeCompare 635.5 1.95 456.5 0.84
DifFuzz
pwcheck_unsafe 943.8 24.89 5965.1 13.84
pwcheck_diffuzz 2039.4 31.51 200.5 17.67
jetty_fix_unsafe 5137.8 4.35 123.1 15.15

Figure 1: Measured difference in execution time in ns.

While many packages perform comparison in near constant-
time for fixed-size input, we observe that some display significant
timing-leaks when the size of input is not fixed, thereby leaking
secrets. The package tsscmp [11] uses so-called double HMAC, hash-
ing each argument before comparing them. However, the hashing
function takes time proportional to the length of the input, hence
leaking input size. Another package contains a comment arguing
that "buffer sizes should be well-known information" [9]. Only the
built-in crypto library of Nodejs alerts the user and raises an excep-
tion if given input of different sizes. For cryptographic protocols,
constant-time comparison should arguably be performed on hashed
strings, hence the size of input can be assumed to be fixed. However,
we note that if solely usable in this setting, timing-channels can
only leak the hashed secret. Unless the hashing function is broken,
the original secret remains secure.

Nilizadeh et al. [5] use DifFuzz to analyse the three programs
pwcheck_unsafe, pwcheck_diffuzz, and jetty_fix_unsafe using the

byte-code instruction count as an estimate for execution time. Pro-
gram pwcheck_unsafe checks that the lengths of the two inputs
are the same, before iterating over the inputs in a simple for-loop,
returning the result as soon as a mismatch is found. We note that
timing-channel we find using variable size input is smaller than
when using fixed-size input. For this program, a long execution
time is obtained if the lengths of the inputs match and they agree
on a long prefix. This suggests that our fuzzer finds a local maxi-
mum using relatively short input. Maximising the timing-channel
requires increasing the length of the public argument, but doing so
makes the program terminate early unless secret input is updated
accordingly.

Nilizadeh et al. propose the program pwcheck_diffuzz (Listing 1)
that is considered safe by their analysis.

1 let unused;
2 let matches = true;
3 for (let i = 0; i < pub.length; i++) {
4 if (i < sec.length) {
5 if (pub[i] !== sec[i]) {
6 matches = false;
7 } else {
8 unused = true;
9 }
10 } else {
11 matches = false;
12 unused = true;
13 }
14 }
15 return matches;

Listing 1: pwcheck_diffuzz

We observe that this supposedly safe program leaks the length
of the input, a fact missed by DifFuzz. We also find that the pro-
gram leaks the secret by the branching on line 5. It is well-known
that control-flow branches are not constant time [2] due to branch
prediction. While our tool fails to exploit this leak and generate
input that maximises the timing difference, we observe that man-
ually crafted input can reveal this side-channel. We expect a high
number of mispredicted branches if the match is random. We test
this hypothesis by constructing buffers pub, sec1, sec2 such that
pub = sec1 and pub

50%≃ sec2, where
50%≃ denotes that for all 𝑖 ,

𝑃 [pub[𝑖] = sec2 [𝑖]] = 0.5. Measuring the timing difference be-
tween executions (pub, sec1) and (pub, sec2) we observe a 𝛿 of 2000,
suggesting a timing-leak from branch-prediction.

4 CHALLENGES AND LIMITATIONS
Mitigating timing-channels in a high-level language such as JavaScript
is difficult as optimising compilers may rewrite the source program
thereby voiding any constant-time guarantees [10]. This problem
is exacerbated by the just-in-time (JIT) compilation of JavaScript
[1]. This makes it difficult to write truly constant-time code in
JavaScript. As is considered best practice, the constant time com-
parison of Nodejs’s crypto library is implemented in low-level
assembly [7].

We find that there are a number of challenges remaining be-
fore fully realising differential fuzzing guided by wall-clock time.
While the effects of garbage collection and other processes running
on the same machine appear only minor in our findings, branch
prediction poses a challenge for maximising timing side-channels.

Short Paper: Differential fuzzing of constant-time packages in JavaScript

As the branch-predictor becomes trained during testing, a highly-
matching input can suddenly become fast, and a poorly-matching
inputs slow, as the branch-predictor expects a match.

REFERENCES
[1] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. Jit leaks: inducing timing side

channels through just-in-time compilation. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1207–1222. IEEE, 2020.

[2] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. Constant-time foundations for the new
spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page 913–926, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:
10.1145/3385412.3385970. URL https://doi.org/10.1145/3385412.3385970.

[3] fuzzit.dev. Jsfuzz, 2021. URL https://gitlab.com/gitlab-org/security-products/
analyzers/fuzzers/jsfuzz. Accessed: 2021-10-19.

[4] Daniel Hedin and David Sands. Timing aware information flow security for a
javacard-like bytecode. Electronic Notes in Theoretical Computer Science, 141(1):
163–182, 2005.

[5] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. Diffuzz: differential
fuzzing for side-channel analysis. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 176–187. IEEE, 2019.

[6] npm Inc. npm, 2021. URL https://www.npmjs.com/. Accessed: 2021-10-19.
[7] OpenSSL. Openssl, 2021. URL https://github.com/openssl/openssl. Accessed:

2021-10-19.
[8] Mathias V Pedersen and Aslan Askarov. From trash to treasure: timing-sensitive

garbage collection. In 2017 IEEE Symposium on Security and Privacy (SP), pages
693–709. IEEE, 2017.

[9] salesforce. buffer-equal-constant-time, 2013. URL https://github.com/salesforce/
buffer-equal-constant-time. Accessed: 2021-10-19.

[10] Laurent Simon, David Chisnall, and Ross Anderson. What you get is what you
c: Controlling side effects in mainstream c compilers. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 1–15. IEEE, 2018.

[11] suryagh. tsscmp, 2018. URL https://github.com/suryagh/tsscmp. Accessed:
2021-10-19.

https://doi.org/10.1145/3385412.3385970
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/jsfuzz
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/jsfuzz
https://www.npmjs.com/
https://github.com/openssl/openssl
https://github.com/salesforce/buffer-equal-constant-time
https://github.com/salesforce/buffer-equal-constant-time
https://github.com/suryagh/tsscmp

	Abstract
	1 Introduction
	2 Implementation
	3 Evaluation
	4 Challenges and limitations
	References

