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Abstract—Traffic analysis attacks remain a significant problem
for online security. Communication between nodes can be observed
by network level attackers as it inherently takes place in the open.
Despite online services increasingly using encrypted traffic, the
shape of the traffic is not hidden. To prevent traffic analysis, the
shape of a system’s traffic must be independent of secrets.

We investigate adapting the data-oblivious approach the reactive
setting and present OblivIO, a secure language for writing
reactive programs driven by network events. Our approach
pads with dummy messages to hide which program sends are
genuinely executed. We use an information-flow type system
to provably enforce timing-sensitive noninterference. The type
system is extended with potentials to bound the overhead in
traffic introduced by our approach. We address challenges that
arise from joining data-oblivious and reactive programming and
demonstrate the feasibility of our resulting language by developing
an interpreter that implements security critical operations as
constant-time algorithms.

I. INTRODUCTION

Online communication between network nodes inherently
takes place in the open. Even when using encrypted traffic,
network level attackers can still observe the traffic shape
including timing, bandwidth, and destination. Traffic analysis
attacks are possible when secrets affect the traffic shape of
a system and enable attackers to infer often highly detailed,
sensitive information about user interactions across a wide
range of online services [1].

Strategies for mitigating traffic analysis have predominantly
been developed at the system-level [2] where solutions can
be applied to existing applications and services in a black-box
fashion. However, this approach incurs significant – if not
practically infeasible – overheads in latency and bandwidth in
order to achieve a high degree of security [3]. System-level
approaches are program-agnostic by nature and hence performs
some traffic padding even when no possible control flow would
produce genuine traffic.

Traffic analysis is made possible by observable attributes
of shape of traffic, such as time. Timing leaks have been
extensively studied in the programming languages commu-
nity. Language-based approaches are particularly appealing as
language-level information can make the enforcement precise.
Compared with general approaches for mitigating timing
channels [4, 5, 6, 7], our focus on traffic analysis enables
us to exploit dummy traffic as a means to reduce overheads
introduced by the enforcement.

1 TRANSFER(from: int,amount: int,to: int) {
2 if amount <= balance[from]
3 then {
4 balance[from] -= amount;
5 balance[to] += amount;
6 }
7 else send(ERROR,(amount,balance[from]));
8 }

Listing 1. Traffic leak

Timing channels are also a significant security concern for
the cryptographic community. Almost all modern cryptography
deals with timing side-channels by constant-time programming
[8]. Constant-time programs may neither branch nor access
memory depending on secrets. This ensures that programs do
not leak via their execution time. However, these restrictions
make adhering to constant-time programming hard and requires
developers to deviate from conventional programming practices
[9]. Data-oblivious languages [10, 11] ease the restrictions
imposed by constant-time programming by introducing obliv-
ious conditionals and oblivious memory accesses. Oblivious
conditionals execute both branches, but negate the unwanted
side-effects of the non-chosen branch. The data-oblivious
approach does not permit loops with secret guards as loop
termination would cause a leak. Instead, the programmer can
provide a public upper bound on the number of loop iterations
and obliviously branch on secrets inside the loop.

The reactive programming model is a natural fit for online
services and IoT devices. In this model, applications are written
as a collection of event handlers that are triggered in response
to observing associated events. This allows for scalable, reliable
software, as it assumes no control over, or knowledge of, the
number or timing of events [12]. However, as shown by Chen
et al. [1], many applications written in this model leak sensitive
information. Listing 1 shows a simple handler for transferring
money from one account to another, for example as part of
an online transaction. If the amount to transfer exceeds the
balance of the source account, no money is transferred and an
error message is sent. This message will be observable if sent
over standard internet protocols.

In this paper we consider the problem of mitigating traffic
analysis in a reactive setting. We consider traffic leaks through
the observable timing, size, and destination of messages.
Our strategy for preventing traffic leaks is to adapt the
data-oblivious approach to the reactive setting: execute both



branches of sensitive conditionals, pad the traffic with dummy
messages at send commands in non-chosen branches, and
obliviously execute handlers upon receiving dummy messages.
We implement this strategy in the design of OblivIO, a secure
language for reactive programs, driven by network events.
Programs written in the language are secure by construction,
satisfying progress-sensitive, timing-sensitive noninterference,
while incurring a bounded overhead in the number of dummy
messages. The main contributions of this paper are:

∙ We adapt the data-oblivious approach to the reactive
setting and develop OblivIO, a statically typed language
for writing reactive programs.

∙ We provide a security-labelled type system and prove that
well-typed programs in OblivIO are secure against net-
work level attackers, satisfying progress-sensitive, timing-
sensitive noninterference.

∙ We bound the traffic overhead introduced by our approach
by typing commands and network channels with potentials
and show that the overhead is bounded by the potentials.

∙ We demonstrate the practicality of our approach by
developing a real-time interpreter that implements oblivi-
ous branching and constant-time algorithms for security
critical operations.

Our model builds upon the work of Bohannon et al. [13] that
gives the foundational model for noninterference for reactive
programs. They develop a type system that enforces timing-
and termination-insensitive noninterference. Their model does
not consider leaks to network level attackers.

Like Bohannon et al. [13], we rely on static enforcement
of noninterference. Static enforcement is well-suited for our
problem as both the code and the types of reactions in the
program are well-known and as we enforce progress-sensitive
security. Here, we benefit from the precision of static analysis
with regards to termination behaviour, which is difficult to
achieve in purely dynamic setting. Many dynamic approaches
use hybrid techniques where they inspect non-chosen branches
of conditionals to recover this precision [14, 15]. Static
enforcement would not be suitable if code or the types of
reactions were not statically known.

The rest of this paper is structured as follows. In Section II
we discuss how we adapt the data-oblivious approach to the
reactive setting and provide the semantics of OblivIO. The
type system is presented in Section III. Section IV presents
the formal security condition and noninterference theorem,
while Section V presents a bound on the traffic overhead
introduced by our approach. In Section VI we demonstrate the
language by example. We discuss how we have implemented
the language semantics in our interpreter in Section VII. We
discuss our approach and compare it with existing approaches
in Section VIII and provide related work in Section IX before
we conclude in Section X.

II. LANGUAGE

In this section we provide brief background on reactive
programs and data-obliviousness and discuss the terminology

we will use in this paper. We then give our threat model and
provide the semantics of OblivIO.

A. Background and terminology
We briefly outline reactive programs, constant-time pro-

gramming, and data-obliviousness, and the distinction between
genuine and dummy traffic.

Reactive programs: Reactive programs consist of handlers
that are triggered by associated events, imposing no structure on
the order or timing of events. This allows for reliable programs
that scale easily by introducing new events and handlers.

Reactive programming is a popular model for online services,
where client interaction is intermittent and irregular, due to its
inherent flexibility, and languages such as JavaScript follow
this model. Online services present radically different security
challenges from applications running on a single machine
or a closed network as communication channels use public,
potentially compromised infrastructure.

Constant-time programming: Constant-time programming
is at the heart of almost all modern cryptography [8, 16, 17].
Under this paradigm, programs may not branch on secrets,
access secret memory locations, or use secrets in variable-time
operations such as division. This ensures that programs are
secure, but makes them difficult for developers to write [9].

Data-oblivious programming: Data-oblivious programming
relaxes some of the restrictions imposed by constant-time
programming. The principal idea of data-oblivious languages
is oblivious conditionals [10, 11]. Instead of a branch in the
control-flow, oblivious conditionals execute both branches and
negate the unwanted side-effects in the non-chosen branch.
This prevents branching-related timing differences and ensures
that secrets do not affect whether a command is executed or
whether an expression is evaluated.

Dummy messages: A common strategy for mitigating traffic
analysis is to introduce dummy messages. Dummy messages
are additional, fake messages introduced by the enforcement
mechanism [3, 18, 19, 20]. Informally, dummy messages should
only serve to hide which traffic is genuine and should not not
alter the semantics of a system. This does not always hold in
practice, e.g., as dummy messages may introduce overhead in
latency or execution time that affects time reads.

B. A data-oblivious approach to reactive programming
Extending the data-oblivious approach to programs with

observable IO is not straightforward as observable side-effects
cannot safely be suppressed. If an assign statement occurs
in a sensitive conditional, the assignment must be suitably
padded in order to hide the genuine branch. Otherwise, the
value would be unsafe to send at any later point, as a network
level attacker could observe the size of the value and thus
infer the genuine branch. Suppressing messages in non-chosen
branches is also not an option as the absence of traffic would
be observed. Instead, any message sent in a non-chosen branch
must be replaced a convincing dummy message. Additionally,
such dummy message must be reacted to and handled in a
convincing manner, including possibly generating new traffic.

2



Combining reactive and data-oblivious programming there-
fore introduces the need for bounding the number of dummy
messages generated by a system. To demonstrate the problem,
we consider the interaction between the two small programs
below, where oblif is a primitive for oblivious branching.
For every message received, two new messages are sent. If this
program were allowed, the amount of dummy traffic would
grow exponentially over time, dominating real computation
and crippling the utility of the system.

1 PING (x: int) {
2 oblif x
3 then send(PONG,1);
4 else send(PONG,0);
5 }

1 PONG (x: int) {
2 oblif x
3 then send(PING,1);
4 else send(PING,0);
5 }

To address this issue, we take inspiration from static resource
analysis, where types are annotated with potentials [21, 22, 23].
We discuss how we use potentials in Section III and show a
bound on the overhead in traffic in Section V.

C. Threat model

We consider the security of a network node running a reactive
program that processes incoming network messages sequentially
using a single event loop. Every handler in the program defines
a channel endpoint, and other nodes can send messages on
the associated channel to trigger execution of the handler. We
assume that all nodes run OblivIO programs. We consider a
lattice  of security levels 𝓁 and assign levels to each channel.
The lattice has distinguished bottom element ⊥, corresponding
to the network level.

We consider an active adversary who can be one of the
other network nodes. The adversary knows the program being
run and knows its initial secrets up to some level 𝓁adv. We
assume that the adversary can observe the presence, size, time,
and channel of all network messages, can drop messages, and
perform replay attacks. We assume that the contents of network
messages is hidden from unprivileged parties by encryption,
and that the adversary can decrypt and read the contents of
messages sent on channels up to level 𝓁adv.

D. Language

OblivIO is a simple, statically typed language for data-
oblivious, reactive programs. Programs written in OblivIO
consist of a number of handlers that are triggered by associated
events. We let events model network messages. Each handler
in a program defines a channel endpoint, such that messages
sent on the channel get processed by the handler. Events are
processed sequentially and during execution, OblivIO programs
change between consumer states, 𝐶 , that wait for the next
network message, and producer states, 𝑃 , that execute the
appropriate handler for the current network message. We model
incoming network messages using strategies, functions that map
network traces to messages.

We let 𝑛 range over integer literals and 𝑠 range over string
literals. We let 𝑥 range over variables. Values in OblivIO are
written ⦇𝑣⦈𝑧 and consist of a base value 𝑣 and a size 𝑧. Base

values 𝑣 are either an integer or a string and sizes 𝑧 are non-
negative integers. We assume an attacker that can observe the
size of any network message sent. Therefore, we cannot easily
protect secrets of arbitrary size. Instead, we settle for protecting
secrets up to a publicly known upper bound. This upper bound
can be any size greater than or equal to the actual size of the
secret. That is, we assume that value ⦇𝑣⦈𝑧 can be padded to
⦇𝑣⦈𝑧′ for any 𝑧′ ≥ 𝑧. We assume a function size for computing
the size of base values 𝑣 and maintain well-formed values such
that for any ⦇𝑣⦈𝑧 we have size(𝑣) ≤ 𝑧. We provide the formal
definition in Section III.

At runtime, the system maintains a persistent, global store
𝜇 mapping variables to size-annotated values. Handlers define
a variable 𝑥 for binding the value of a received message as
a read-only value in local memory 𝑚. Local memory 𝑚 is
cleared when the execution of the handler finishes.

We assume two distinct types of channels: local and
network. Local channels model non-network channels, where
the presence of messages is not observable to the attacker, e.g.,
keyboard input or sensor readings. We maintain a queue for
each local channel to prevent the presence of messages on
one channel from tainting reads on another. We let 𝜋 denote
a local environment: a mapping from local channels to a
stream of value options. We let ∙ denote that no value is
available. We choose this representation as it makes it easier
to bound the overhead in traffic (Section V). Network channels
model channels where communication can be observed. Thus,
the presence of messages on all network channels is public.
This allows network messages to be combined into a single
queue. We model incoming network traffic using network
strategies 𝜔, functions from network traces to messages of form
ch(𝑡, 𝑏, ⦇𝑣⦈𝑧). We choose this model over the equally expressive
model of streams ([24]) as it does not pre-compute future
messages, thereby more intuitively capturing the interactive
nature of network communication and allowing us to more
faithfully state our overhead theorem (Theorem 2).

The distinction between local and network channels is
motivated by the observation that messages with secret presence
must be handled specially. Observable side-effects such as
sending message or introducing latency would leak the presence
of such message. We therefore minimise the interface with
messages with secret presence by not considering them events
that handlers react to. Instead, we allow programs to read from
local channels using input statements.

We now explain the formal semantics and non-standard
features of the language. We assume a security lattice  of
security levels 𝓁 with bottom element ⊥, lattice ordering ⊑,
and least upper bound operation ⊔. Level ⊥ corresponds to the
network level. We also refer to this level as public. We assume
that all nodes run OblivIO programs. We assume that message
contents can be sufficiently hidden, e.g., using encryption, but
that their presence, size, and destination are publicly observable.

Figure 1 presents the syntax of OblivIO. A program 𝑝
consists of a number of handlers ch(𝑥){𝑐}, where ch is the
network channel associated with the handler and variable 𝑥
binds the incoming message in local memory. Commands 𝑐
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are largely standard, though with novel commands to facilitate
oblivious execution. Commands stop and pop are only used
internally and therefore not part of the syntax of the language.

𝑝 ∶∶= ⋅ ∣ ch(𝑥){𝑐}; 𝑝
𝑐 ∶∶= skip ∣ 𝑐; 𝑐 ∣ 𝑥 = 𝑒 ∣ 𝑥 ?= 𝑒 ∣ 𝑥 ?= input(ch, 𝑒)

∣ send(ch, 𝑒) ∣ if 𝑒 then 𝑐 else 𝑐
∣ while 𝑒 do 𝑐 ∣ oblif 𝑒 then 𝑐 else 𝑐

𝑒 ∶∶= 𝑛 ∣ 𝑠 ∣ 𝑥 ∣ 𝑒 ⊕ 𝑒
⊕ ∶∶= + ∣ - ∣ * ∣ = ∣ != ∣ < ∣ <= ∣ > ∣ >= ∣ && ∣ || ∣ ^

Figure 1. Syntax of the language

We use a big-step semantics for evaluating expressions
(Figure 2). Expression 𝑒 are evaluated using local memory
𝑚 and global store 𝜇. For simplicity, memory 𝑚 is read-only
in the presented model and binds just the current message
value in the handler variable. We let local memory shadow the
global store.

size(𝑛) = 𝑧
⟨𝑛, 𝑚, 𝜇⟩ ⇓ ⦇𝑛⦈𝑧

size(𝑠) = 𝑧
⟨𝑠, 𝑚, 𝜇⟩ ⇓ ⦇𝑠⦈𝑧

𝑥 ∈ dom(𝑚)
⟨𝑥, 𝑚, 𝜇⟩ ⇓ 𝑚(𝑥)

𝑥 ∉ dom(𝑚)
⟨𝑥, 𝑚, 𝜇⟩ ⇓ 𝜇(𝑥)

⟨𝑒1, 𝑚, 𝜇⟩ ⇓ ⦇𝑣1⦈𝑧1 𝑣1 ⊕ 𝑣2 = 𝑣3
⟨𝑒2, 𝑚, 𝜇⟩ ⇓ ⦇𝑣2⦈𝑧2 𝑧1⊕size𝑧2 = 𝑧3

⟨𝑒1 ⊕ 𝑒2, 𝑚, 𝜇⟩ ⇓ ⦇𝑣3⦈𝑧3

Figure 2. Semantics of evaluating expressions

We assume that binary operations ⊕ are total and have an
associate operation ⊕size for computing the size of the result
from the sizes of the operands. We further assume that binary
operations preserve well-formed values, that is, if size(𝑣1) ≤ 𝑧1,
size(𝑣2) ≤ 𝑧2, and 𝑣1⊕𝑣2 = 𝑣3, then size(𝑣3) ≤ 𝑧1⊕size𝑧2. We
discuss how ⊕size can be implemented in Section VII.

E. Command semantics
Commands are evaluated using a small-step operational

presented in Figure 3. Configuration ⟨𝑏, 𝑐, 𝑚, 𝜇, 𝜋, ℎ⟩ consists
of a command 𝑐, memory 𝑚, store 𝜇, local environment 𝜋, and
history ℎ. We let history ℎ record the commands executed in a
run and the variables used. This allows us to model that different
instructions take different amounts of time as well as cache-
and branch-related timing differences [5, 25]. We assume that
execution time of instructions is affected by the size of values
used, but not by their specific value. This assumption does
not come for free, but requires careful handling of sensitive
language primitives. Extending our language with pointers,
arrays, or variable-time operations would require careful
consideration. One straightforward strategy for sensitively
indexing arrays is by linear scan over all array elements and
using bit-masks to select only the element at the desired index.

To obtain high-resolution timestamps 𝑡, we assume a strictly
increasing function time from histories to numeric values
representing real time. That is, for all histories ℎ and history

events ev we have time(ℎ) < time(ℎ ∷ ev). Histories and
high-resolution timestamps may appear too strong a formalism
considering that we execute sensitive conditionals obliviously
and therefore have that runs that agree on initial public state will
agree on history and time. This level of accuracy is motivated
by our attacker model and allows us to show the strong security
guarantee enforced by our approach.

We let 𝑏 denote a stack of execution mode bits 𝑏 ∈ {1, 0}.
For consistency with existing terminology [11] we say that
execution takes place in either real or phantom mode. We let 1
denote real mode and 0 denote phantom mode. The execution
mode is first set when triggering a handler. Genuine messages
are handled in real mode while dummy messages are handled
in phantom mode. The execution mode changes from real to
phantom mode for the non-chosen branch when obliviously
branching by oblif.

Transitions ⟨𝑏, 𝑐, 𝑚, 𝜇, 𝜋, ℎ⟩
𝛼
←←←←←←→ ⟨𝑏

′
, 𝑐′, 𝑚′, 𝜇′, 𝜋′, ℎ′⟩ denote

a step from one configuration to another emitting output event
𝛼. Output events 𝛼 are possibly empty, denoted 𝜖, and are
given by the following grammar:

𝛼 ∶∶= 𝜖 ∣ ⃖⃖⃖⃗ch(𝑡, 𝑏, ⦇𝑣⦈𝑧)

Non-empty events correspond to network traffic and contain
channel ch, denoting which channel the message is sent on;
high-resolution timestamp 𝑡, denoting when the message is sent;
bit 𝑏, denoting the execution mode the message was sent under;
and value ⦇𝑣⦈𝑧. Timestamps 𝑡 are attacker observable giving
us a strong attacker model (Section IV). Intuitively, programs
are noninterferent if related runs agree on the timestamps of
all messages, which we can only ensure if their computational
histories are the same. Bit 𝑏 indicate whether a message is
genuine or dummy. Messages produced in real mode 𝑏 = 1 are
genuine, while messages produced in phantom mode 𝑏 = 0 are
dummy. This enables the recipient of the message to execute
the handler in the appropriate mode. We now explain the formal
semantics and non-standard features.

If: Standard conditionals are done by if 𝑒 then 𝑐1
else 𝑐2. The rule is largely standard, but to accurately model
branch-related timing effects we append history ℎ with event
br(𝑒, 𝑧, 𝑖), where 𝑖 is the chosen branch.

Oblif and Pop: We introduce command oblif 𝑒 then
𝑐1 else 𝑐2 for oblivious branching. When obliviously branch-
ing, two bits are pushed onto bit-stack 𝑏, one for each branch.
The chosen branch continues with the current execution mode
𝑏, while the non-chosen branch is executed in phantom mode
0. After executing each branch, command pop removes the
top element of the bit-stack.

Assign and oblivious assign: Standard assignment is done by
command 𝑥 = 𝑒. Standard assignment is intended for use only
in real mode, and we do not give semantics to the command
for phantom mode. Our type system enables us to ensure that
the command is never reached in phantom mode (Section III).
We introduce a command 𝑥 ?= 𝑒 for oblivious assignment. The
command conditionally updates the base value of 𝑥 depending
on the execution mode and unconditionally pads the size of the
value in the store to mask whether the base value was changed.
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Skip

⟨𝑏,skip, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨𝑏,stop, 𝑚, 𝜇, 𝜋, ℎ ∷ skp⟩

Seq1
⟨𝑏, 𝑐1, 𝑚, 𝜇, 𝜋, ℎ⟩

𝛼
←←←←←→ ⟨𝑏

′
, 𝑐′1, 𝑚

′, 𝜇′, 𝜋′, ℎ′
⟩ 𝑐′1 ≠ stop

⟨𝑏, 𝑐1; 𝑐2, 𝑚, 𝜇, 𝜋, ℎ⟩
𝛼
←←←←←→ ⟨𝑏

′
, 𝑐′1; 𝑐2, 𝑚

′, 𝜇′, 𝜋′, ℎ′
⟩

Seq2
⟨𝑏, 𝑐1, 𝑚, 𝜇, 𝜋, ℎ⟩

𝛼
←←←←←→ ⟨𝑏

′
,stop, 𝑚′, 𝜇′, 𝜋′, ℎ′

⟩

⟨𝑏, 𝑐1; 𝑐2, 𝑚, 𝜇, 𝜋, ℎ⟩
𝛼
←←←←←→ ⟨𝑏

′
, 𝑐2, 𝑚

′, 𝜇′, 𝜋′, ℎ′
⟩

Assign
⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑣⦈𝑧 𝜇′ = 𝜇[𝑥 ↦ ⦇𝑣⦈𝑧]

⟨1 ∷ 𝑏, 𝑥 = 𝑒, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨1 ∷ 𝑏,stop, 𝑚, 𝜇′, 𝜋, ℎ ∷ asn(𝑥, 𝑒, 𝑧)⟩

OblivAssign

𝜇(𝑥) = ⦇𝑣0⦈𝑧0 ⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑣1⦈𝑧1 𝑧 = max(𝑧0, 𝑧1) 𝑖 =
{

1 if 𝑏 = 1
0 if 𝑏 = 0

⟨𝑏 ∷ 𝑏, 𝑥 ?= 𝑒, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨𝑏 ∷ 𝑏,stop, 𝑚, 𝜇[𝑥 ↦ ⦇𝑣𝑖⦈𝑧], 𝜋, ℎ ∷ casn(𝑥, 𝑒, 𝑧)⟩

LocalInput

𝜇(𝑥) = ⦇𝑣𝑥⦈𝑧𝑥 ⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑛𝑒⦈𝑧𝑒 𝑧′ = max(𝑧𝑥, 𝑛𝑒) 𝑣′, 𝜋′ =

⎧

⎪

⎨

⎪

⎩

𝑣, 𝜋[ch ↦ tl] if 𝑏 = 1 and 𝜋(ch) = ⦇𝑣⦈𝑧 ∷ tl and 𝑧 ≤ 𝑛𝑒
𝑣𝑥, 𝜋[ch ↦ tl] if 𝑏 = 1 and 𝜋(ch) = ∙ ∷ tl
𝑣𝑥, 𝜋 otherwise

⟨𝑏 ∷ 𝑏, 𝑥 ?= input(ch, 𝑒), 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨𝑏 ∷ 𝑏,stop, 𝑚, 𝜇[𝑥 ↦ ⦇𝑣′⦈𝑧′ ], 𝜋′, ℎ ∷ in(𝑥, ch, 𝑒, 𝑧𝑥)⟩

Send
⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑣⦈𝑧 ℎ′ = ℎ ∷ out(ch, 𝑒, 𝑧) 𝑡 = time(ℎ′)

⟨𝑏 ∷ 𝑏,send(ch, 𝑒), 𝑚, 𝜇, 𝜋, ℎ⟩
⃖⃗ch(𝑡,𝑏,⦇𝑣⦈𝑧)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑏 ∷ 𝑏,stop, 𝑚, 𝜇, 𝜋, ℎ′

⟩

If
⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑣⦈𝑧 𝑣 ≠ 0 ⟹ 𝑖 = 1 𝑣 = 0 ⟹ 𝑖 = 2

⟨𝑏,if 𝑒 then 𝑐1 else 𝑐2, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶
⟨𝑏, 𝑐𝑖, 𝑚, 𝜇, 𝜋, ℎ ∷ br(𝑒, 𝑧, 𝑖)⟩

While
𝑐′ = if 𝑒 then 𝑐; while 𝑒 do 𝑐 else skip

⟨1 ∷ 𝑏,while 𝑒 do 𝑐, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶
⟨1 ∷ 𝑏, 𝑐′, 𝑚, 𝜇, 𝜋, ℎ ∷ whl⟩

Pop

⟨𝑏 ∷ 𝑏,pop, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨𝑏,stop, 𝑚, 𝜇, 𝜋, ℎ ∷ pop⟩

OblivIf
𝑏 = 𝑏 ∷ _ ⟨𝑒, 𝑚, 𝜇⟩ ⇓ ⦇𝑣⦈𝑧 𝑣 ≠ 0 ⟹ 𝑏1 = 𝑏 ∧ 𝑏2 = 0 𝑣 = 0 ⟹ 𝑏1 = 0 ∧ 𝑏2 = 𝑏 ℎ′ = ℎ ∷ obr(𝑒, 𝑧)

⟨𝑏,oblif 𝑒 then 𝑐1 else 𝑐2, 𝑚, 𝜇, 𝜋, ℎ⟩ ⟶ ⟨𝑏1 ∷ 𝑏2 ∷ 𝑏, 𝑐1;pop; 𝑐2;pop, 𝑚, 𝜇, 𝜋, ℎ′
⟩

Figure 3. Operational semantics of commands

Input: Programs sample local channels using non-blocking
input command 𝑥 ?= input(ch, 𝑒). Receives on channels
with secret presence are restricted to non-blocking semantics
as blocking would cause a leak [26]. The value of variable
𝑥 is only changed if executed in real mode and a message is
available with size less than the evaluation of expression 𝑒.
The size of 𝜇(𝑥) is unconditionally padded, similar to oblivious
assignment. The head of the message stream associated with
the local channel is either ⦇𝑣⦈𝑧, if a value is available, or ∙, if
no value is available.

Send: Command send(ch, 𝑒) evaluates expression 𝑒 to
obtain value ⦇𝑣⦈𝑧. The step emits event ch(𝑡, 𝑏, ⦇𝑣⦈𝑧) capturing
the network message; the value, when and to whom it was
sent, and under what mode.

While: Since the base values in store 𝜇 and memory 𝑚 are
not modified while under phantom mode, executing loops in
phantom mode would lead to non-termination as the value of
guard expression 𝑒 could not be modified. For this reason, we
restrict while-loops to real-mode execution.

F. Program semantics
A reactive program is at any point in one of two states.

Consumer states (𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏) consist of program 𝑝, global
store 𝜇, local environment 𝜋, network strategy 𝜔, history ℎ,
and trace 𝜏. Consumer states, as the name implies, consumes
network events and triggers the appropriate handlers. Producer
states (𝑝, 𝑏, 𝑐, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch consist of program 𝑝, bit-stack 𝑏,
command 𝑐, local memory 𝑚, global store 𝜇, local environment
𝜋, network strategy 𝜔, history ℎ, trace 𝜏, and are annotated
with channel ch associated with the currently executing handler.
We let 𝐶 range over consumer states, 𝑃 range over producer
states, and 𝑄 range over both consumer and producer states.

We extend events 𝛼 with incoming messages ⃖⃖⃖⃖ch(𝑡, 𝑏, ⦇𝑣⦈𝑧)
and observed messages c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧):

𝛼 ∶∶= … ∣ ⃖⃖⃖⃖ch(𝑡, 𝑏, ⦇𝑣⦈𝑧) ∣ c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧)

Observed messages c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧) correspond to the local node
observing the network traffic between two remote nodes. Their
inclusion enables us to bound the traffic overhead for the entire
network (Section V). We let ↭ range over {←,→,∼}.
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Network traces 𝜏 are used as input for strategies 𝜔 to obtain
the next network message and are given by the following
grammar:

𝜏 ∶∶= 𝜖 ∣ 𝜏 ⋅ 𝛼

By convention, we only modify the trace when appending
non-empty events, that is, for any 𝜏 we have 𝜏 ⋅ 𝜖 = 𝜏.

We now give semantics to the states and state transitions of
a reactive program (Figure 4).

CC
𝜔(𝜏) = ch(𝑡, 𝑏, ⦇𝑣⦈𝑧) (𝑝)(ch) ⇓̸

(𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏) ⟶ (𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏 ⋅ c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧))

CP
𝜔(𝜏) = ch(𝑡, 𝑏, ⦇𝑣⦈𝑧)

(𝑝)(ch) ⇓ 𝑐, 𝑥 ℎ′ = ℎ ∷ hl(ch, 𝑡, 𝑧) 𝜏 ′ = 𝜏 ⋅ ⃖⃖⃖⃖ch(𝑡, 𝑏, ⦇𝑣⦈𝑧)
(𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏) ⟶ (𝑝, [𝑏], 𝑐, [𝑥 ↦ ⦇𝑣⦈𝑧], 𝜇, 𝜋, 𝜔, ℎ′, 𝜏 ′)ch

PP
⟨𝑏, 𝑐, 𝑚, 𝜇, 𝜋, ℎ⟩

𝛼
←←←←←→ ⟨𝑏

′
, 𝑐′, 𝑚′, 𝜇′, 𝜋′, ℎ′

⟩

(𝑝, 𝑏, 𝑐, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch ⟶ (𝑝, 𝑏
′
, 𝑐′, 𝑚′, 𝜇′, 𝜋′, 𝜔, ℎ′, 𝜏 ⋅ 𝛼)ch

PC

(𝑝, 𝑏,stop, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch ⟶ (𝑝, 𝜇, 𝜋, 𝜔, ℎ ∷ ret, 𝜏)

Figure 4. Operational semantics of system

Consumer state 𝐶 transitions depending on whether program
𝑝 defines a handler associated with that channel (Figure 5).

(ch(𝑥){𝑐}; 𝑝)(ch) ⇓ 𝑐, 𝑥
ch ≠ ch′ (𝑝′)(ch′) ⇓ 𝑐′, 𝑥′

(ch(𝑥){𝑐}; 𝑝′)(ch′) ⇓ 𝑐′, 𝑥′

Figure 5. Handler selection

If 𝑝 defines no associated handler, written (𝑝)(ch) ̸⇓,
execution continues in consumer state 𝐶 ′, where the trace
has been annotated with an observed message c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧). If
𝑝 defines an associated handler, written (𝑝)(ch) ⇓ 𝑐, 𝑥, handler
selection evaluates to command 𝑐 and variable 𝑥. Local memory
𝑚 is constructed by assigning message value ⦇𝑣⦈𝑧 to variable 𝑥
and execution proceeds in producer state 𝑃 , executing command
𝑐. The producer state executes in the mode 𝑏 of the received
message by using singleton bit-stack [𝑏]. A producer state 𝑃
steps by the operational semantics of commands (Figure 3),
appending emitted events to the trace. Execution continues
in producer state until reaching command stop, when it
transitions back into consumer state.

III. ENFORCEMENT

In this section we provide and discuss the type system for
OblivIO. We type global stores 𝜇 using typing environment
Γ. We type local channels using typing environment Π and
type network channels using typing environment Λ. Typing
environments Γ, Π, and Λ are static and do not change during
execution. Local memory 𝑚 is typed using typing environment
Δ which is computed per handler. We give variables in store
and memory, and local channels, a type of the form 𝜎@𝓁,

where 𝜎 ∈ {int, string} and 𝓁 ∈ . We let 𝑞, 𝑟 range over non-
negative integer potentials and give network channels type of
the form 𝜎@𝓁mode;𝓁val; 𝑞, where 𝓁mode is the security level of
the message mode, and 𝓁val is the security level of the message
value. Potentials 𝑞, 𝑟 are inspired by static resource analysis
[21, 22, 23]. Resource analysis commonly uses potentials to
infer the resource bounds of a program. We use potentials 𝑞 to
bound the number of dummy messages that may be generated
by the handler of the channel.

A. Typing of expressions

We now present the type system for OblivIO. Expressions
are typed Γ;Δ ⊢ 𝑒 ∶ 𝜎@𝓁 (Figure 6). We type local memory
using environment Δ and type global store using environment
Γ. We let bindings in Δ shadow bindings in Γ. The rules are
otherwise standard.

Γ;Δ ⊢ 𝑛 ∶ int@𝓁 Γ;Δ ⊢ 𝑠 ∶ string@𝓁

𝑥 ∈ dom(Δ)
Γ;Δ ⊢ 𝑥 ∶ Δ(𝑥)

𝑥 ∉ dom(Δ)
Γ;Δ ⊢ 𝑥 ∶ Γ(𝑥)

⊕ ∶ 𝜎1 × 𝜎2 → 𝜎3
Γ;Δ ⊢ 𝑒1 ∶ 𝜎1@𝓁1 Γ;Δ ⊢ 𝑒2 ∶ 𝜎2@𝓁2

Γ;Δ ⊢ 𝑒1 ⊕ 𝑒2 ∶ 𝜎3@𝓁1 ⊔ 𝓁2

Figure 6. Typing rules for expressions

B. Typing of commands

Commands are typed Γ,Π,Λ;Δ; pc ⊢𝑞 𝑐. Potential 𝑞 bounds
the number of dummy messages that can be produced while
executing command 𝑐, as well as any additional dummy
messages that are transitively produced across the network
when handling dummy messages produced by executing 𝑐.
ASThis allows us to reason locally about the network-wide
overhead in traffic. The typing rules are provided in Figure 7.

Our key insight is to restrict program commands with
observable side-effects and provide safe, oblivious counterparts
where possible. In standard models, label pc tracks the security
level of the control flow. That is not quite so in our model. The
semantics of obliviously branching means that the control flow
is the same for all executions that agree on the initial public
state. However, the execution mode may differ. As such, pc
tracks the security level of the execution mode in our model.
We enforce that phantom mode only occurs for commands that
type with non-public pc.

Sequential composition: Sequential composition 𝑐1; 𝑐2 types
with potential 𝑞1 + 𝑞2 if 𝑐𝑖 types with potential 𝑞𝑖, for 𝑖 = 1, 2.
As 𝑞1, 𝑞2 ≥ 0 this prevents double spending of potential.

Assign and oblivious assign: We allow standard, uncon-
ditional assignment only under public pc as we only give
semantics to the command when executing in real mode. We
allow oblivious assignment under any pc. Rule T-OBLIVASSIGN
is similar to standard assignment rules in other models and is
made safe by the padding semantics of OBLIVASSIGN.
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T-Skip

Γ,Π,Λ;Δ; pc ⊢𝑞 skip

T-Assign
𝑥 ∉ dom(Δ) Γ(𝑥) = 𝜎@𝓁𝑥 Γ;Δ ⊢ 𝑒 ∶ 𝜎@𝓁𝑒 𝓁𝑒 ⊑ 𝓁𝑥

Γ,Π,Λ;Δ;⊥ ⊢𝑞 𝑥 = 𝑒

T-Seq
Γ,Π,Λ;Δ; pc ⊢𝑞1 𝑐1 Γ,Π,Λ;Δ; pc ⊢𝑞2 𝑐2

Γ,Π,Λ;Δ; pc ⊢𝑞1+𝑞2 𝑐1; 𝑐2

T-OblivAssign
𝑥 ∉ dom(Δ)

Γ(𝑥) ∶ 𝜎@𝓁𝑥 Γ;Δ ⊢ 𝑒 ∶ 𝜎@𝓁𝑒 𝓁𝑒 ⊔ pc ⊑ 𝓁𝑥

Γ,Π,Λ;Δ; pc ⊢𝑞 𝑥 ?= 𝑒

T-LocalInput
𝑥 ∉ dom(Δ) Γ(𝑥) ∶ 𝜎@𝓁𝑥

Π(ch) = 𝜎@𝓁ch Γ;Δ ⊢ 𝑒 ∶ int@𝓁𝑒 𝓁𝑒 ⊔ pc ⊑ 𝓁ch ⊑ 𝓁𝑥

Γ,Π,Λ;Δ; pc ⊢𝑞 𝑥 ?= input(ch, 𝑒)

T-Send
Γ;Δ ⊢ 𝑒 ∶ 𝜎@𝓁𝑒 Λ(ch) = 𝜎@𝓁mode;𝓁val; 𝑟

pc ⊑ 𝓁mode 𝓁𝑒 ⊑ 𝓁val 𝑞′ =
{

0 if pc = ⊥
1 + 𝑟 otherwise

Γ,Π,Λ;Δ; pc ⊢𝑞+𝑞′ send(ch, 𝑒)

T-If
Γ;Δ ⊢ 𝑒 ∶ int@⊥ Γ,Π,Λ;Δ; pc ⊢𝑞 𝑐1 Γ,Π,Λ;Δ; pc ⊢𝑞 𝑐2

Γ,Π,Λ;Δ; pc ⊢𝑞 if 𝑒 then 𝑐1 else 𝑐2

T-While
Γ;Δ ⊢ 𝑒 ∶ int@⊥ Γ,Π,Λ;Δ;⊥ ⊢0 𝑐

Γ,Π,Λ;Δ;⊥ ⊢𝑞 while 𝑒 do 𝑐

T-OblivIf
Γ;Δ ⊢ 𝑒 ∶ int@𝓁

𝓁 ≠ ⊥ Γ,Π,Λ;Δ; pc ⊔ 𝓁 ⊢𝑞1 𝑐1 Γ,Π,Λ;Δ; pc ⊔ 𝓁 ⊢𝑞2 𝑐2
Γ,Π,Λ;Δ; pc ⊢𝑞1+𝑞2 oblif 𝑒 then 𝑐1 else 𝑐2

Figure 7. Typing of commands

If and oblif: We restrict non-oblivious conditionals to public
guards only and type if 𝑒 then 𝑐1 else 𝑐2 with potential
𝑞 such that 𝑞 types both 𝑐1 and 𝑐2. For branching on secrets,
we use oblivious branching. The potential annotations in typing
rule T-OBLIVIF resemble those of T-SEQ as both branches
are executed and and both branches may produce traffic. We
restrict oblivious branching to non-public guards to ensure that
phantom computation only takes place under non-public pc.

While: Like other data-oblivious languages [10, 11], we
restrict while-loops to public guards. Unlike conditionals, there
is no oblivious counterpart to while-loops. Intuitively, if the
guard of a while-loop were secret, ending the loop at any
point would cause a leak. A common technique in oblivious
programming is to use a public upper-bound as the guard for
the loop and obliviously branch on the secret inside the loop
[10, 11]. OblivIO allows programmers to adopt this approach.
Rule T-WHILE further restricts that while 𝑒 do 𝑐 must be
typed with pc = ⊥ and that 𝑐 must be typed with potential

𝑞 = 0. The restriction on pc helps us ensure that computation
in phantom mode terminates. We do not update base values in
memory or store in phantom mode, thus guard 𝑒 would evaluate
to the same value in every iteration of the loop if executed
under phantom mode. The restriction on potential is motivated
by bounding the number of dummy messages through the type
system and prevents double spending of potential.

Send: For sends, typing rule T-SEND enforces that the
program counter label pc flows to context label 𝓁mode of the
receiving channel, and that expression label 𝓁𝑒 flows to the
value label 𝓁val. Our type system and semantic rules ensure
that only commands that can be typed with non-public pc ≠ ⊥
may be executed in phantom mode. Labelling channels with
𝓁mode = ⊥ therefore ensures that only genuine messages may
be sent on the channel and allows the handler to perform non-
oblivious assignments and while-loops even when 𝓁val ≠ ⊥.

T-SEND requires that 1 + 𝑟 potential is available if pc ≠ ⊥,
where 𝑟 is the potential available in the recipient handler of the
message. This accounts for the message possibly being dummy
as well as dummy messages produced transitively across the
network in response. Because dummy messages require strictly
greater potential than what is available in the recipient handler
(as they can only be sent under non-public pc), trace potential
is strictly decreasing when sending dummy messages. This
prevents handlers from sending dummy messages in an infinite
loop. Note that loops are possible under pc = ⊥ where we are
assured that messages are genuine. We show that potentials
bound the number of dummy messages in Section V.

C. Typing of programs and systems
Program 𝑝 is well-typed if the body of each handler is

well-typed with respect to their respective channel (Figure 8).

Γ,Π,Λ ⊢ ⋅

Λ(ch) = 𝜎@𝓁mode;𝓁val; 𝑞
Γ,Π,Λ; [𝑥 ↦ 𝜎@𝓁val];𝓁mode ⊢

𝑞 𝑐 Γ,Π,Λ ⊢ 𝑝
Γ,Π,Λ ⊢ ch(𝑥){𝑐}; 𝑝

Figure 8. Typing of programs

We formally define well-formed values (Definition 1). A
value is well-formed if the size of its base value is less than
or equal to the annotated public size bound.

Definition 1 (Well-formed value). Value ⦇𝑣⦈𝑧 is well-formed,
written ⊢ ⦇𝑣⦈𝑧, if size(𝑣) ≤ 𝑧.

We say that store 𝜇 is well-formed with respect to typing
environment Γ if the values bound in variables are well-formed
and are of the correct type (Definition 2).

Definition 2 (Well-formed store w.r.t. typing environment).
Store 𝜇 is well-formed w.r.t. typing environment Γ, written
Γ ⊢ 𝜇, if dom(Γ) = dom(𝜇) and for all 𝑥 ∈ dom(Γ) we have

1) Γ(𝑥) = int@𝓁 ⟹ ∃𝑛, 𝑧 ∶ 𝜇(𝑥) = ⦇𝑛⦈𝑧 ∧ size(𝑛) ≤ 𝑧
2) Γ(𝑥) = string@𝓁 ⟹ ∃𝑠, 𝑧 ∶ 𝜇(𝑥) = ⦇𝑠⦈𝑧 ∧ size(𝑠) ≤ 𝑧

Well-formedness of memory 𝑚 with respect to typing
environment Δ is defined equivalently (Definition 3).
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Definition 3 (Well-formed memory w.r.t. typing environment).
Store 𝑚 is well-formed w.r.t. typing environment Δ, written
Δ ⊢ 𝑚, if dom(Δ) = dom(𝑚) and for all 𝑥 ∈ dom(Δ) we have

1) Δ(𝑥) = int@𝓁 ⟹ ∃𝑛, 𝑧 ∶ 𝑚(𝑥) = ⦇𝑛⦈𝑧 ∧ size(𝑛) ≤ 𝑧
2) Δ(𝑥) = string@𝓁 ⟹ ∃𝑠, 𝑧 ∶ 𝑚(𝑥) = ⦇𝑠⦈𝑧 ∧ size(𝑠) ≤ 𝑧

We say that local environment 𝜋 is well-formed with respect
to typing environment Π if, for each channel, all values are
well-formed and are of the correct type (Definition 4).
Definition 4 (Well-formed local message environment w.r.t
typing environment). Define local environment 𝜋 to be well-
formed with respect to typing environment Π, written Π ⊢ 𝜋, if
dom(Π) = dom(𝜋) and for all ch ∈ dom(Π) such that Π(ch) =
𝜎@𝓁 we have ⊢𝜎 𝜋(ch) defined by the following rules:

⊢𝜎 []
⊢𝜎 tl

⊢𝜎 ∙ ∷ tl
size(𝑛) ≤ 𝑧 ⊢int tl

⊢int ⦇𝑛⦈𝑧 ∷ tl

size(𝑠) ≤ 𝑧 ⊢string tl
⊢string ⦇𝑠⦈𝑧 ∷ tl

Next, we define the potential 𝑞 of trace 𝜏 with respect
to typing environment Λ. Trace potential loosely bounds the
number of future dummy messages that may result after
observing a given trace. Genuine messages

↭
ch (𝑡, 1, ⦇𝑣⦈𝑧)

increase the potential of a trace by the annotated potential 𝑟 of
channel ch in Λ, while dummy messages

↭
ch (𝑡, 0, ⦇𝑣⦈𝑧) decrease

the potential by one. The definition does not capture that
potential is strictly decreasing for all sends under non-public
pc, but is nevertheless sufficient for showing our overhead
theorem (Section V).
Definition 5 (Trace potential). Define potential 𝑞 of a trace 𝜏
with respect to typing environment Λ, written Λ ⊢ 𝜏 ∶ 𝑞, by
the following rules:

Λ ⊢ 𝜖 ∶ 0
Λ ⊢ 𝜏 ∶ 𝑞 Λ(ch) = _@_; _; 𝑟

Λ ⊢ 𝜏 ⋅
↭
ch (𝑡, 1, ⦇𝑣⦈𝑧) ∶ 𝑞 + 𝑟

Λ ⊢ 𝜏 ∶ 𝑞 + 1

Λ ⊢ 𝜏 ⋅
↭
ch (𝑡, 0, ⦇𝑣⦈𝑧) ∶ 𝑞

Using Definition 5, we define well-formedness of network
strategies 𝜔 with respect to typing environment Λ (Definition 6).
A network strategy is well-formed if messages ch(𝑡, 𝑏, ⦇𝑣⦈𝑧)
it produces are well-formed and of the correct type, and if
dummy messages are only produced on non-public channels
and only when the trace has sufficient potential for the dummy
message and the annotated potential 𝑟 of channel ch in Λ.

We enforce the bound by a well-formedness condition for
network strategies 𝜔 (Definition 6) and prove that it is enforced
by handlers in well-typed programs. We provide this proof in
the accompanying technical report.

Definition 6 (Well-formed network strategy). Network strategy
𝜔 is well-formed w.r.t. typing environment Λ, written Λ ⊢
𝜔, if for any 𝜏 such that 𝜔(𝜏) = ch(𝑡, 𝑏, ⦇𝑣⦈𝑧) and Λ(ch) =
𝜎@𝓁mode; _; 𝑟 we have size(𝑣) ≤ 𝑧 and

∙ 𝜎 = int ⟹ ∃𝑛 ∶ 𝑣 = 𝑛

∙ 𝜎 = string ⟹ ∃𝑠 ∶ 𝑣 = 𝑠
∙ 𝑏 = 0 ⟹ 𝓁mode ≠ ⊥ ∧ Λ ⊢ 𝜏 ∶ 𝑞 + 1 + 𝑟

We lift typing of programs, stores, local environments, and
network strategies to typing of consumer states 𝐶 , written
Γ,Π,Λ ⊢ 𝐶 , in the straightforward way in Figure 9.

Γ,Π,Λ ⊢ 𝑝 Γ ⊢ 𝜇 Π ⊢ 𝜋 Λ ⊢ 𝜔
Γ,Π,Λ ⊢ (𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)

Figure 9. Typing of system

IV. NONINTERFERENCE

In this section define attacker knowledge, our security
condition, and give our noninterference theorem that well-
typed programs in OblivIO satisfy the security condition. We
first define the equivalence relations necessary for our attacker
knowledge definition and security condition.

We define stores 𝜇1, 𝜇2 to be equivalent up to level 𝓁adv
with respect to typing environment Γ (Definition 7) if, for every
variable, they agree on the values up to that level. We further
require that the public sizes of values are the same.

Definition 7 (Equivalence of store up to level). Stores 𝜇1 and
𝜇2 are equivalent up to level 𝓁adv w.r.t. typing environment Γ,
written 𝜇1 ≈Γ

𝓁adv
𝜇2, if for all 𝑥 ∈ dom(Γ) with Γ(𝑥) = 𝜎@𝓁

we have that if 𝜇1(𝑥) = ⦇𝑣1⦈𝑧1 and 𝜇2(𝑥) = ⦇𝑣2⦈𝑧2 then
1) 𝑧1 = 𝑧2
2) 𝓁 ⊑ 𝓁adv ⇒ 𝑣1 = 𝑣2
Equivalence of memories 𝑚1, 𝑚2 level 𝓁adv with respect to

typing environment Δ is defined equivalently (Definition 8).

Definition 8 (Equivalence of memory up to level). Memories
𝑚1 and 𝑚2 are equivalent up to level 𝓁adv w.r.t. typing
environment Δ, written 𝑚1 ≈Δ

𝓁adv
𝑚2, if for all 𝑥 ∈ dom(Δ)

s.t. Δ(𝑥) = 𝜎@𝓁, we have that if 𝑚1(𝑥) = ⦇𝑣1⦈𝑧1 and
𝑚2(𝑥) = ⦇𝑣2⦈𝑧2 then

1) 𝑧1 = 𝑧2
2) 𝓁 ⊑ 𝓁adv ⇒ 𝑣1 = 𝑣2
We define local environments 𝜋1, 𝜋2 to be equivalent up

to level 𝓁adv with respect to typing environment Π, written
𝜋1 ≈Π

𝓁adv
𝜋2, by equality on the streams at all channels up level

𝓁adv (Definition 9).
Definition 9 (Equivalence of local environment up to level).
Equivalence of local environments 𝜋1 and 𝜋2 up to level 𝓁adv
w.r.t. typing environment Π, written 𝜋1 ≈Π

𝓁adv
𝜋2, is defined by

the following rule:
Π(ch) = 𝜎@𝓁 𝓁 ⊑ 𝓁adv ⟹ 𝜋1(ch) = 𝜋2(ch)

𝜋1 ≈Π
𝓁adv

𝜋2

Two events 𝛼1, 𝛼2 are equivalent up to level 𝓁adv (Defini-
tion 10) if they agree on the properties observable at that level.

Definition 10 (Equivalence of output events up to level).
Equivalence of events 𝛼1 and 𝛼2, up to level 𝓁adv w.r.t. typing
environment Λ, written 𝛼1 ≈Λ

𝓁adv
𝛼2, is defined by as follows:
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𝜖 ≈Λ
𝓁adv

𝜖

Λ(ch) = 𝜎@𝓁mode;𝓁val; 𝑞
𝓁mode ⊑ 𝓁adv ⟹ 𝑏1 = 𝑏2 𝓁val ⊑ 𝓁adv ⟹ 𝑣1 = 𝑣2

↭
ch (𝑡, 𝑏1, ⦇𝑣1⦈𝑧) ≈Λ

𝓁adv

↭
ch (𝑡, 𝑏2, ⦇𝑣2⦈𝑧)

We lift this definition to equivalence on traces, written
𝜏1 ≈Λ

𝓁adv
𝜏2, in the straightforward way by point-wise equiva-

lence (Definition 11).
Definition 11 (Trace equivalence up to level). Equivalence
of traces 𝜏1, 𝜏2 up to level 𝓁adv w.r.t. typing environment Λ,
written 𝜏1 ≈Λ

𝓁adv
𝜏2, is defined by the following rules

𝜖 ≈Λ
𝓁adv

𝜖

𝜏1 ≈Λ
𝓁adv

𝜏2 𝛼1 ≈Λ
𝓁adv

𝛼2
𝜏1 ⋅ 𝛼1 ≈Λ

𝓁adv
𝜏2 ⋅ 𝛼2

We define external event queues 𝜔1, 𝜔2 to be equivalent up to
level 𝓁adv with respect to typing environment Λ (Definition 12)
if they agree on the channel, timestamp and size of messages
for equivalent traces, as well as message mode and value of
messages on channels observable at that level.

Definition 12 (Equivalence of network strategies up to level).
Network strategies 𝜔1 and 𝜔2 are equivalent up to level 𝓁adv
w.r.t. typing environment Λ, written 𝜔1 ≈Λ

𝓁adv
𝜔2, if for any ch

s.t. Λ(ch) = 𝜎@𝓁mode;𝓁val; 𝑞 and any 𝜏1, 𝜏2 such that 𝜏1 ≈Λ
𝓁adv

𝜏2 we have that if 𝜔(𝜏1) = ch1(𝑡1, 𝑏1, ⦇𝑣1⦈𝑧1 ) and 𝜔(𝜏2) =
ch2(𝑡2, 𝑏2, ⦇𝑣2⦈𝑧2 ) then ch1 = ch2, 𝑡1 = 𝑡2, 𝑧1 = 𝑧2, and

∙ 𝓁mode ⊑ 𝓁adv ⟹ 𝑏1 = 𝑏2
∙ 𝓁val ⊑ 𝓁adv ⟹ 𝑣1 = 𝑣2
We lift the above equivalence definitions to define equiva-

lence of consumer states, written 𝐶1 ≈Γ,Π,Λ
𝓁adv

𝐶2, by straight-
forward lifting of the equivalences of the components (Defini-
tion 13).
Definition 13 (Equivalence of consumer states). Define con-
sumer states 𝐶1, 𝐶2 to be equivalent up to level 𝓁adv, with
respect to typing environments Γ,Π,Λ, written 𝐶1 ≈

Γ,Π,Λ
𝓁adv

𝐶2,
by the following rule:

𝜇1 ≈Γ
𝓁adv

𝜇2 𝜋1 ≈Π
𝓁adv

𝜋2 𝜔1 ≈Λ
𝓁adv

𝜔2 𝜏1 ≈Λ
𝓁adv

𝜏2

(𝑝, 𝜇1, 𝜋1, 𝜔1, ℎ, 𝜏1) ≈
Γ,Π,Λ
𝓁adv

(𝑝, 𝜇2, 𝜋2, 𝜔2, ℎ, 𝜏2)

To simplify our security condition, we define the projection
of the trace component from configuration 𝑄, written trace(𝑄),
in the straightforward way (Definition 14).

Definition 14 (Trace of configuration). Define the projection
of the trace of configuration 𝑄, written trace(𝑄), as follows:

trace(𝑄) =

{

𝜏 if 𝑄 = (𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)
𝜏 if 𝑄 = (𝑝, 𝑏, 𝑐, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch

We are now ready to define attacker knowledge (Defini-
tion 15). Given typing environments Γ,Π,Λ, a consumer state
𝐶 , and a level 𝓁adv, we define attacker knowledge as the set

of equivalent consumer states 𝐶 ′ that produce an equivalent
trace when run.

Definition 15 (Attacker knowledge). Given consumer state 𝐶
and trace 𝜏 such that 𝐶 ⟶∗𝑄, with trace(𝑄) = 𝜏, define
attacker knowledge at level 𝓁adv as follows:

𝑘Γ,Π,Λ(𝐶, 𝜏,𝓁adv) ≜
{𝐶 ′ ∣ 𝐶 ≈Γ,Π,Λ

𝓁adv
𝐶 ′ ∧ 𝐶 ′ ⟶∗𝑄′ ∧ 𝜏 ≈Λ

𝓁adv
trace(𝑄′

2)}

We use the attacker knowledge definition to define our timing-
sensitive, progress-sensitive security condition (Definition 16).

Definition 16 (Progress-sensitive noninterference). Given
consumer state 𝐶 and a run 𝐶 ⟶∗𝑄 with trace(𝑄) = 𝜏 ⋅ 𝛼,
the run satisfies progress-sensitive noninterference if for all
levels 𝓁adv we have 𝑘Γ,Π,Λ(𝐶, 𝜏 ⋅ 𝛼,𝓁adv) ⊇ 𝑘Γ,Π,Λ(𝐶, 𝜏,𝓁adv).

With our security condition defined, we are ready to state
the soundness theorem for our type system (Theorem 1).

Theorem 1 (Soundness). Given Γ,Π,Λ and consumer state 𝐶
such that Γ,Π,Λ ⊢ 𝐶 . If 𝐶 ⟶∗ 𝑄 with trace(𝑄) = 𝜏 ⋅ 𝛼 then
𝑘Γ,Π,Λ(𝐶, 𝜏 ⋅ 𝛼,𝓁adv) ⊇ 𝑘Γ,Π,Λ(𝐶, 𝜏,𝓁adv).

We provide the proof in the accompanying technical report.

V. ENFORCEMENT OVERHEAD

In this section we provide a bound on the traffic overhead
introduced by OblivIO’s enforcement strategy. The bound is
by a multiplicative factor given by typing environment Λ.
We show this bound by considering two runs, one in the
standard semantics given in Section II and one in an unsafe
semantics that suppresses all dummy messages, and bounding
the difference in the lengths of the traces (Theorem 2). Our
model accounts for observing network traffic between other
nodes by events c̃h(𝑡, 𝑏, ⦇𝑣⦈𝑧) enabling us to bound the amount
of dummy traffic across all network nodes.

The overhead in traffic produced by the enforcement can
be categorised as either direct (dummy messages), or indirect
(additional, genuine messages). As presented, OblivIO has
no indirect overhead and produces the same genuine traffic
under the standard and suppressing semantics. The language as
presented contains no primitives that are affected by phantom
computation, e.g., taking the size of values or taking the time.
Such primitives could be introduced while still bounding direct
overhead, but bounding indirect overhead would be difficult.

We first define the operational semantics of a system that
suppressed dummy messages (Figure 10). Rules CC-UNSAFE
and CP-UNSAFE require that network strategy 𝜔 produces
messages with mode bit 1 to take a step, and rule PP-UNSAFE
filters all events that are not sends with mode bit 1.

Next, we define extension relations for relating values, traces,
and network strategies up to the effects of phantom.

We define the extension on values as equality up to padding
of the extended value (Definition 17).

Definition 17 (Extension of values). Define value ⦇𝑣2⦈𝑧2 to
be an extension of value ⦇𝑣1⦈𝑧1 , written ⦇𝑣1⦈𝑧1 ⪅ ⦇𝑣2⦈𝑧2 , if
𝑣1 = 𝑣2 and 𝑧1 ≤ 𝑧2.
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CC-Unsafe
𝜔(𝜏) = ch(𝑡, 1, ⦇𝑣⦈𝑧) (𝑝)(ch) ⇓̸

(𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏) ←←←←←←←←←←←←←←←←←←←←→
unsafe

(𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏 ⋅ c̃h(𝑡, 1, ⦇𝑣⦈𝑧))

CP-Unsafe
𝜔(𝜏) = ch(𝑡, 1, ⦇𝑣⦈𝑧)

(𝑝)(ch) ⇓ 𝑐, 𝑥 ℎ′ = ℎ ∷ in(ch, 𝑡, 𝑧) 𝜏 ′ = 𝜏 ⋅ ⃖⃖⃖⃖ch(𝑡, 1, ⦇𝑣⦈𝑧)
(𝑝, 𝜇, 𝜋, 𝜔, ℎ, 𝜏) ←←←←←←←←←←←←←←←←←←←←→

unsafe
(𝑝, [1], 𝑐, [𝑥 ↦ ⦇𝑣⦈𝑧], 𝜇, 𝜋, 𝜔, ℎ′, 𝜏 ′)ch

PP-Unsafe
⟨𝑏, 𝑐, 𝑚, 𝜇, 𝜋, ℎ⟩

𝛼
←←←←←→ ⟨𝑏

′
, 𝑐′, 𝑚′, 𝜇′, 𝜋′, ℎ′

⟩

𝜏 ′ =

{

𝜏 ⋅ 𝛼 if 𝛼 = ⃖⃖⃖⃗ch(𝑡, 1, ⦇𝑣⦈𝑧)
𝜏 otherwise

(𝑝, 𝑏, 𝑐, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch ←←←←←←←←←←←←←←←←←←←←→
unsafe

(𝑝, 𝑏
′
, 𝑐′, 𝑚′, 𝜇′, 𝜋′, 𝜔, ℎ′, 𝜏 ′)ch

PC-Unsafe

(𝑝, 𝑏,stop, 𝑚, 𝜇, 𝜋, 𝜔, ℎ, 𝜏)ch ←←←←←←←←←←←←←←←←←←←←→
unsafe

(𝑝, 𝜇, 𝜋, 𝜔, ℎ ∷ ret, 𝜏)

Figure 10. Operational semantics of suppressing system

We define trace 𝜏2 to be a phantom extension of trace 𝜏1
(Definition 18) if 𝜏1 contains no dummy messages and, for
all genuine messages, the traces agree on channels, bits, and
values up to value extension.
Definition 18 (Trace equivalence up to phantom). Define trace
𝜏2 to be a phantom extension of trace 𝜏1, written 𝜏1

∙
⪅ 𝜏2, by

the following rules:

𝜖
∙
⪅ 𝜖

𝜏1
∙
⪅ 𝜏2

𝜏1
∙
⪅ 𝜏2⋅

↭
ch (𝑡, 0, ⦇𝑣⦈𝑧)

𝜏1
∙
⪅ 𝜏2 ⦇𝑣1⦈𝑧1 ⪅ ⦇𝑣2⦈𝑧2

𝜏1⋅
↭
ch (𝑡, 1, ⦇𝑣1⦈𝑧1 )

∙
⪅ 𝜏2⋅

↭
ch (𝑡′, 1, ⦇𝑣2⦈𝑧2 )

We define network strategy 𝜔2 to be a phantom extension
of network strategy 𝜔1 with respect to typing environmtn Λ
(Definition 19) if for related trace 𝜏1, 𝜏2 we have that if 𝜔2(𝜏2)
returns a genuine message, then so does 𝜔1(𝜏1) and the values
of the messages are related by extension.
Definition 19 (Network strategy). Define network strategy 𝜔2
to be a phantom extension of network strategy 𝜔1 w.r.t typing
environment Λ, written 𝜔1

∙
⪅Λ 𝜔2, by the following rule:

𝜏1
∙
⪅ 𝜏2 ∧ 𝜔2(𝜏2) = ch(𝑡2, 1, ⦇𝑣2⦈𝑧2 ) ⟹

𝜔1(𝜏1) = ch(𝑡1, 1, ⦇𝑣1⦈𝑧1 ) ∧ ⦇𝑣1⦈𝑧1 ⪅ ⦇𝑣2⦈𝑧2
𝜔1

∙
⪅Λ 𝜔2

Finally, we define 𝑞Λmax as the maximum potential annotation
of channels in typing environment Λ (Definition 20).

Definition 20 (Maximum potential). Define maximum potential
w.r.t Λ, written 𝑞Λmax, as follows

𝑞Λmax = max{𝑞 ∣ _@_; _; 𝑞 ∈ range(Λ)}

With the above definitions in place, we are ready to state
our overhead theorem (Theorem 2). It says that given a

configurations starting from the empty trace and considering
a run in the suppressing semantics producing trace 𝜏1, then
a run in the standard semantics with any extended network
strategy, will produce an extended trace 𝜏2 that longer by at
most a factor of 𝑞Λmax.

Theorem 2 (Overhead). Consider (𝑝, 𝜇, 𝜋, 𝜔1, ℎ, 𝜖) such that
Γ,Π,Λ ⊢ (𝑝, 𝜇, 𝜋, 𝜔1, ℎ, 𝜖) and 𝜔2 such that 𝜔1

∙
⪅Λ 𝜔2. If we

have a run in the unsafe semantics (𝑝, 𝜇, 𝜋, 𝜔1, ℎ, 𝜖) ←←←←←←←←←←←←←←←←←←←←←←←→unsafe
∗𝑄1

with trace(𝑄1) = 𝜏1 then we have a run in the safe semantics
(𝑝, 𝜇, 𝜋, 𝜔2, ℎ, 𝜖) ⟶∗𝑄2 with trace(𝑄2) = 𝜏2 such that 𝜏1

∙
⪅ 𝜏2

and |𝜏2| ≤ |𝜏1| ∗ (1 + 𝑞Λmax).

The proof is provided in the accompanying technical report.

VI. EXAMPLE: AUCTION SERVICE

In this section we demonstrate OblivIO by example. The
example we shall use is a simple, secure auction service. Further
examples can be found in the accompanying technical report.

We provide type annotations for handlers and variables with
the convention that handler CH𝓁mode

$𝑞 (𝑥 ∶ 𝜎𝓁val
) {𝑐} at node

NODE is a handler for channel NODE/CH such that

Γ,Π,Λ; [𝑥 ↦ 𝜎@𝓁val];𝓁mode ⊢
𝑞 𝑐

Potential 𝑞 is zero where omitted.
The auction consists of users Alice and Bob, the auction

house, and a simple timing service used by the auction house
for timing rounds. We omit the code for Bob as it is equivalent
to the code for Alice.

We consider users Alice and Bob to be trusted and only
consider leaks to network level attackers. We therefore consider
a simple two-point lattice {L,H} with ordering L ⊑ L, L ⊑ H,
and H ⊑ H. All other flows are illegal.

1 ALICE // Node ID
2

3 var max_bid : int𝐻;
4

5 TO_LEAD𝐻 $1 (bid : int𝐻) {
6 oblif bid <= max_bid
7 then send(AUCTIONHOUSE/ALICE_BID, bid);
8 else skip;
9 }

10

11 ...

Listing 2. Alice

Alice’s client code is provided in Listing 2. Messages on
channel ALICE/TO_LEAD inform her of what she must bid
to take the lead. The channel is typed with non-public context
label and can receive dummy messages in case Alice is already
leading. When receiving a genuine message, Alice obliviously
branches on whether the required bid is less than or equal to
the maximum bid she is willing to make. If so, she makes the
bid. When receiving a dummy message, the send on Line 7
will execute under phantom mode regardless of the value she
receives. The channel is typed with potential 1 as it may produce
a dummy message on channel AUCTIONHOUSE/ALICE_BID,
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which is typed with potential 0. When the auction
finishes, Alice is notified of the winner on channel
AUCTIONHOUSE/AUCTION_OVER_NAME and the winning
bid on channel AUCTIONHOUSE/AUCTION_OVER_BID.

1 AUCTIONTIMER // Node ID
2

3 var c : int𝐿;
4

5 BEGIN𝐿 (i : int𝐿) {
6 c = i * 2000;
7 while (c > 0) do {
8 c = c - 1;
9 }

10 send(AUCTIONHOUSE/TICK, 0);
11 }

Listing 3. Auction timer

Listing 3 presents the code for the auction timer. It is a
simple busy waiting loop that counts down to zero before
sending a message on channel AUCTIONHOUSE/TICK.

1 AUCTIONSERVER // Node ID
2

3 var winner : string𝐻;
4 var winning_bid : int𝐻;
5 var round_counter : int𝐿;
6

7 ALICE_BID𝐻 (bid: int𝐻) {
8 oblif winning_bid < bid
9 then {

10 winner ?= "Alice";
11 winning_bid ?= bid;
12 }
13 else skip;
14 }
15

16 TICK𝐿 $4 (dmy: int𝐿) {
17 if round_counter > 0
18 then {
19 oblif winner != "Alice"
20 then send(ALICE/TO_LEAD, winning_bid+1);
21 else skip;
22 ...
23 round_counter = round_counter - 1;
24 send(AUCTIONTIMER/BEGIN, 1);
25 } else {
26 send(ALICE/AUCTION_OVER_NAME,winner);
27 send(ALICE/AUCTION_OVER_BID,winning_bid);
28 ...
29 }
30 }

Listing 4. Auction server

Listing 4 presents the auction server code. The server stores
the current winner and the winning bid in variables with secret
label 𝐻 and a round counter with public label 𝐿. The server
starts by sending messages to Alice and Bob and starts the
auction timer. When receiving bids, the auction server checks
whether the bid is greater than the current winning bid and if
so updates winning bid and winner.

When receiving a message on channel TICK from the auction
timer, the auction server checks how many rounds are remaining.
As the number of rounds is public, the branching on Line 17

need not be oblivious. On Line 19, the server obliviously
branches on whether Alice is the current leader and if not,
it sends her a message informing her what she must bid to
take the lead. Once the round counter reaches zero, the server
informs Alice and Bob of the outcome of the auction.

VII. IMPLEMENTATION

In this section we demonstrate the practicality of OblivIO by
developing an interpreter that implements the language seman-
tics. The interpreter implements security critical operations as
constant-time algorithms.

Best practice for constant-time programming is to write
the code using low-level languages, as optimising compilers
may change security critical code and void the constant-time
property [27]. However, we argue that development of the
interpreter acts as a sanity check on our semantics and ideas and
demonstrates that they are, in principle, possible to implement
in a low-level language. Our interpreter is written in OCaml,
but contains no language specific features.

The interpreter represents integers in the straightforward way,
assigning them fixed size. Strings are represented as as tuples
int*char array, where the the character array contains
the padded string value and the integer component denotes
the length of the prefix of the character array corresponding
to the actual string. This choice allows us to access indices
in arrays based on their padded sizes. The interpreter sup-
ports arithmetic, boolean, and all comparison operations on
integers. For strings, it supports comparisons = and !=, and
concatenation ^. The interpreter gives integers fixed size hence
⊕size is defined trivially for all operations that return integer
result. For concatenation of string ⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 , we define
𝑧1^size𝑧2 = 𝑧1 + 𝑧2.

In the algorithms presented below, we shall use notation
⦇𝑠⦈𝑧 for strings for consistency with the rest of the paper.
The translation to the internal representation of the interpreter
is straightforward. For simplicity, the presented algorithms
assume integer representations of booleans and chars, leaving
conversions implicit.

Algorithm 1 presents data-oblivious string comparison. The
algorithm returns 1 if the strings are equal up to padding,
otherwise 0. That is, SAFEEQ(⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 ) = 1 iff. 𝑠1 = 𝑠2.
The algorithm stores whether any mismatch has been found in
variable 𝑥, starting with comparing the secret lengths of the
strings. The algorithm then checks for equality by taking the
xor of the character values at every index 𝑖, masking out indices
beyond the semantic strings by using bit 𝑏. This code is similar
to code widely used in state of the art cryptographic libraries
such as libsodium [16] and OpenSSL [17]. For simplicity, the
presented algorithm assumes that the public lengths 𝑧1, 𝑧2 are
equal. These lengths are public and we assume that padding
by a known amount does not leak any secrets.

Our interpreter implements oblivious assignments using a
deep-copy semantics and utilising algorithms for constant-
time selection. We use a common algorithm for constant-time
selection of integers 𝑖, 𝑗:

𝑥 = ((1 xor 𝑏) ∗ 𝑖) lor (𝑏 ∗ 𝑗)
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Algorithm 1 Safe string comparison
Require: 𝑧1 = 𝑧2

1: function SAFEEQ(⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 )
2: 𝑥 ← size(𝑠1) lxor size(𝑠2)
3: 𝑙 ← 𝑧1
4: for 𝑖 = 0,… , 𝑙 − 1 do
5: 𝑏 ← 𝑖 < min(size(𝑠1), size(𝑠2))
6: 𝑥 ← 𝑥 lor (𝑏 land (𝑠1[𝑖] lxor 𝑠2[𝑖]))
7: end for
8: return 𝑥 = 0
9: end function

From this, we derive an algorithm for constant-time selection
of strings (Algorithm 2).

Algorithm 2 Safe string select
Require: 𝑧1 = 𝑧2

1: function SAFESELECT(𝑏, ⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 )
2: for 𝑖 = 0,… , 𝑧1 − 1 do
3: 𝑠[𝑖] ← ((1 xor 𝑏) ∗ 𝑠1[𝑖]) lor (𝑏 ∗ 𝑠2[𝑖])
4: end for
5: return ⦇𝑠⦈𝑧1
6: end function

Function SAFESELECT takes three arguments: selection bit 𝑏,
and strings ⦇𝑠1⦈𝑧1 and ⦇𝑠2⦈𝑧2 . If 𝑏 = 0 then ⦇𝑠1⦈𝑧1 is returned
and if 𝑏 = 1 then ⦇𝑠2⦈𝑧2 is returned. We again assume for
simplicity that 𝑧1 = 𝑧2. The selection algorithm selects from
either 𝑠1 or 𝑠2 by multiplying with a bit-mask computed from
𝑏. This kind of bit-masking is ubiquitous in constant-time
programming.

Next, we present our algorithm for string concatenation
(Algorithm 3).

Algorithm 3 Safe string concatenation
1: function SAFECONCAT(⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 )
2: 𝑧 ← 𝑧1 + 𝑧2
3: for 𝑖 = 0,… , 𝑧 − 1 do
4: 𝑠[𝑖] ← 0
5: for 𝑗 = 0,… , 𝑧1 − 1 do
6: 𝑐 ← 𝑠1[𝑗]
7: 𝑏 ← (𝑖 = 𝑗) land (𝑗 < size(𝑠1))
8: 𝑠[𝑖] ← 𝑠[𝑖] lor (𝑏 ∗ 𝑐)
9: end for

10: for 𝑗 = 0,… , 𝑧2 − 1 do
11: 𝑐 ← 𝑠2[𝑗]
12: 𝑏 ← (𝑖 = 𝑗 + size(𝑠1))
13: 𝑠[𝑖] ← 𝑠[𝑖] lor (𝑏 ∗ 𝑐)
14: end for
15: end for
16: return ⦇𝑠⦈𝑧
17: end function

Function SAFECONCAT takes strings ⦇𝑠1⦈𝑧1 , ⦇𝑠2⦈𝑧2 as argu-
ments and outputs ⦇𝑠1^𝑠2⦈𝑧1+𝑧2 , the concatenation of 𝑠1, 𝑠2
padded to size 𝑧1 + 𝑧2. This algorithm is our own invention
and based on similar bit-masking as the algorithms above.

To protect secret length size(𝑠1), the algorithm iterates over
both input strings for each index in the output, leading to
((𝑧1 + 𝑧2)2) time complexity.

VIII. DISCUSSION

We have shown how OblivIO can be used for writing secure,
reactive programs, and we have demonstrated the feasibility
of our approach by developing an interpreter that implements
security critical operations as constant-time algorithms.

The core language of OblivIO is simple yet expressive and
the bit-stack approach for oblivious branching lends itself to
data-oblivious methods such as bit-masking. However, every
security critical operation needs a secure implementation. Each
additional feature we introduce to the language needs a func-
tionally correct, constant-time implementation. Implementing
constant-time algorithms is arduous and non-trivial and is made
even harder by optimising compilers, that force developers of
constant-time code to fight the compiler or write complicated
algorithms in low-level languages [27]. This state of affairs is
clearly undesirable from a security perspective and stresses the
need for secure compiler support that enable security properties
of high-level code to be preserved during compilation.

A. Defences against traffic analysis
Traffic analysis attacks can broadly be divided into two

categories: 1) anonymity, inferring who is participating in
actions or communication, and 2) confidentiality, inferring
what actions are performed or the contents of communication.
Various approaches exist for defending against traffic analysis.
However, approaches developed for protecting against one
category of attacks are not necessarily suitable for protecting
against the other. Concealing who is performing an action
does not necessarily conceal what action is performed, and
concealing what action is performed does not necessarily
conceal who is participating.

OblivIO is designed for protecting confidentiality, protecting
the what of interactions. We discuss existing approaches and
their trade-offs with respect to protecting confidentiality in
more detail. The trade-offs are summarised in Figure 11. We
use to signify that the approach excels, to signify that the
approach performs poorly, and to signify that the approach
falls somewhere in between.

1) System-level approaches: The majority of defences
against traffic analysis have been developed at the system level
[2] and rely on traffic morphing. Traffic morphing conceals
genuine traffic by stretching out bursts of high activity and
padding periods of low activity with dummy traffic. As the
approach is program-agnostic, it is general and can in principle
be applied to existing systems. This makes it highly permissive.
The approach also incurs effectively no overhead in computation
time as only genuine traffic needs to be processed. However,
balancing traffic and latency overheads is challenging. In its
simplest form, traffic morphing utilises constant rate padding,
morphing and padding traffic to other nodes to a constant rate
of fixed-size packets. Such constant-rate connections must be
maintained for all other nodes the system observably sends
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Approach Traffic overhead Latency overhead Bandwidth overhead CPU-time overhead Permissiveness Ease of use
System-level
Constant-time
Data-oblivious

Figure 11. Comparison of different approaches

traffic to. Setting a low rate introduces significant latency
overheads as messages are buffered, while a high rate introduces
significant, if not prohibitive, amounts of dummy traffic [3].
Due to this trade-off between bandwidth and latency overheads,
traffic morphing is most suitable for systems that either produce
relatively constant rates of traffic to a fixed set of other nodes,
or systems that can tolerate long network delays [19].

While traffic morphing is in principle general and permissive,
Cherubin et al. [2] note that the approach may require
substantial changes to applications and network stack, making
deployment unfeasible in practice.

2) Program-level approaches: Compared to system-level
approaches, program-level approaches for mitigating traffic
analysis are less explored. The program-level approach enforces
security by imposing restrictions on the program. This makes
the approach less general and less permissive, but at poten-
tially reduced overheads compared to system-level approaches.
Program-level approaches can ensure that programs are safe
by construction, and as all padding (if any) is performed at the
level of the program, no changes are required to the network
stack, as at all traffic is genuine at the level of the network.

a) Constant-time programming: A simple, but restrictive,
paradigm for eliminating timing leaks is constant-time pro-
gramming. The approach restricts the use of secret data input
for a number of standard language features such as branching,
indexing arrays, and variable-time operations like division. To
get around these restrictions, constant-time programs inline
computation from conditional branches and make clever use of
bit-masking to ensure correctness of the program. Inlining
branches incurs some overhead in computation time, but
the approach introduces no direct overhead in traffic as no
commands are conditionally executed depending on secrets. If a
system can be feasibly rewritten as constant-time programs this
approach is preferential. However, as Almeida et al. [9] note,
adhering to constant-time programming is hard and requires
developers to deviate from conventional programming practices.
This makes the approach suitable only for simple programs.

b) Data-oblivious, reactive programming: Data-oblivious
programming eases the restrictions imposed by constant-time
programming by providing high-level support for writing
constant-time code, thereby also easing the burden on de-
velopers. The principal idea of data-oblivious languages is
oblivious conditionals. Oblivious conditionals execute both
branches while negating unwanted side-effects of the non-
chosen branch. This ensures that control flow and memory
accesses are independent of secrets. OblivIO extends this
principle to the reactive setting, where programs receive and
react to network messages. Our approach incurs an overhead
in traffic by introducing dummy messages for send commands

that are conditionally executed depending on secrets. This
overhead is bounded by a multiplicative factor that is statically
known from typing. Our approach incurs a bandwidth overhead
as the size of message values is padded to a public upper
bound. Bounding the bandwidth overhead would require further
restrictions to the language. Our approach introduces an
overhead in computation time by executing both branches of
oblivious conditionals, but we restrict the language to ensure
termination of non-chosen branches. We do not provide a
bound on the overhead in latency, but note that the number of
dummy messages is bounded and handling them is guaranteed
to terminate, hence we are guaranteed to respond to genuine
messages eventually. Compared to system-level approaches,
our approach is particularly suitable for programs that do not
produce constant rates of traffic to predetermined parties. We
discuss the main limitations of our approach below.

B. Local channels
Our model assumes that messages on local channels may be

sampled in constant-time. This assumption is standard in the
literature (e.g. [26]). Incoming messages must be processed
and prepared for the running application in shared memory,
yet at the same time must not have any effect on the execution
time of the application. This problem arises from the need
to protect message presence. To fully achieve this, fixed-rate
scheduling could be used for a separate thread, dedicated to
process and prepare local input.

C. Limitations
Programs in OblivIO are static and functions are not first

class. This simplifies our model and helps more clearly deliver
the core concepts of our approach. However, dynamic features
in reactive programs are becoming more and more prevalent,
albeit at the cost of introducing leaks [1], and cloud computing
sees code being sent to remote servers to be run. Conceptually,
the principles we have developed for OblivIO could be extended
to handle public, dynamic code. Secret code entails secret
control flow, which goes against the core design principle of the
language. While it is straightforward to protect which of finitely
many pieces of code is genuinely executed (by simply executing
all but one in phantom mode) it is not clear how we could
protect executing arbitrary code without severe restrictions. The
data-oblivious comparison and selection algorithms we present
in Section VII can be extended to new data structures built
from the value types we consider, such as pairs or lists. Here,
functions types are again different. It is not clear how constant-
time selection and padding could be extended to functions.

Our model assumes that it is public which handler (if
any) is triggered by a network message. It is conceptually
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straightforward to hide this up to some degree, though at the
cost of overhead in execution time and traffic, e.g., by setting up
anonymity groups such that receiving an event for one handler
would trigger the execution of all handlers in the group, with
only the genuine handler executing in real mode.

Dynamically registering new secret handlers appears difficult.
If a handler for a channel is registered in phantom mode,
how should an incoming network message on that channel be
handled? We could of course run the handler in phantom mode,
but as the handler could produce network traffic this does not
appear desirable in general. If multiple handlers are potentially
registered depending on secrets, all handlers would need to be
run in order to protect the secrets.

Channels are not first class in our language. There is again
no great conceptual difficulty in supporting standard operations
on channels if it is not secret which channels are operated
on. String identifiers for nodes and handlers could provide an
intuitive model for channels, enabling padding and conditional
assignment, but sending on conditionally bound channels would
reveal which channel is bound as shown by the following
example, where an attacker can infer the secret by observing
whether the message goes to ALICE or BOB:

1 oblif secret
2 then ch = ALICE/GREET
3 else ch = BOB/GREET;
4 send(ch,"Hello");

It may appear that an anonymous communication channel,
possibly connecting via a set of relays, could be used to hide
whom a message is sent to and thereby protect the secret.
Unfortunately, it is not enough to send a single message for
this program if the attacker knows the programs running at
ALICE and BOB. Suppose ALICE replies to messages while
BOB does not. An attacker armed with this knowledge could
infer which node was sent to based on whether a reply is sent.

Our model does not allow real mode computation when han-
dling dummy messages and does not permit genuine messages
to be sent in response to dummy messages. Redefining the
semantic rules to lift these restrictions would be straightforward,
but would complicate reasoning about program correctness for
developers and would make it difficult to bound the overhead
in traffic.

IX. RELATED WORK

Previous work has applied language-based methods to the
reactive programming model. Bohannon et al. [13] develop
a security type system enforcing noninterference for reactive
programs. However, covert channels, such as timing channels,
are outside of the model they consider.

A. Secure multi execution and faceted values
Another approach, which has gained traction in practice, is

Secure Multi Execution (SME) [28]. As the name suggests,
SME executes a code snippet multiple times – once per security
level – carefully restricting the in- and output of each execution
to only the legal channels. The promise of SME is that secure
programs are not adversely affected by the mechanism, a

property called transparency. Coupled with a scheduler that
prioritises low-execution this approach can be applied in a
black-box fashion to programs and protects against timing
leaks. However, the low-priority scheduling discipline faces
issues in the reactive setting as it does not extend to executing
handlers for multiple events [29]. Instead, reactive systems
incorporating the SME principles such as FlowFox, a Firefox
extension for secure information flow in JavaScript, settles
for low-priority scheduling on a per-event basis [30]. This
compromise unfortunately introduces a leak, as high-execution
of a handler for one event taints the low-execution of the
handler for the next.

Rafnsson and Sabelfeld [29] develop a fine-grained version
of SME that models a network level attacker that observes when
messages are sent. They employ a scheduler that enforces that
low-runs never "outrun" high-runs to synchronise I/O between
the runs. Their transparency property states that timing-sensitive
noninterfering programs are not adversely modified in their I/O
behaviour. Almeida et al. [9] point out that adhering to constant-
time programming requires expertise and forces developers to
deviate from conventional programming practices.

Execution using faceted values [31] has many of the same
advantages and disadvantages as SME. While conditional
assignment may intuitively seem related to faceted values, the
above considerations for timing-channels in reactive programs
under SME also apply here and make faceted values unsuitable.
Our approach uses single, real values, regardless of execution
mode, simplifying constant-time algorithms used for operations.
Furthermore, our approach has the advantage of ruling out
insecure programs through typing, rather than being limited to
transparency for secure programs.

B. Timing channels and reactive programs

Bastys et al. [5] point out that remote attackers do not
in general know when a program is started. They develop
Clockwork, a monitor that rules out timing leaks in batch
programs where starting time is not observed. They demon-
strate the permissiveness of their model with the program
if ℎ then ℎ1 := ℎ2; send(𝐿,1), which is consid-
ered unsafe in many models, and indeed would not be accepted
by the type system of OblivIO. However, without knowledge of
when the program starts the program is safe. This observation
does not easily extend to the reactive programs and the network
level attackers we consider, simply because it is not possible
to react to network messages that have not yet been received.
In our model, it is known when an event arrives at a node,
and failure to produce any expected responses is observable
hence an attacker can easily infer that a system is not running.

Blaabjerg and Askarov [20] consider program-level mitiga-
tion of traffic analysis by separating traffic shape from traffic
content. Their approach does not mitigate timing differences
from sensitive conditionals hence secure programs must set
up schedules for all future traffic before executing such
conditionals. The approach therefore does not easily extend to
the reactive setting.
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McCall et al. [32] consider how dynamic features in reactive
programs, such as registering new handlers, can be used to leak
information by abusing declassification policies. They design
new SME rules to enforce separation of the declassification
module from dynamically generated components.

Vassena et al. [33] propose a dynamic information flow
control parallel runtime system that supports deterministic
parallel thread execution. Such methods could be used in
OblivIO to support the parallel processing needed for handling
input on local channels.

C. Constant-time execution
As discussed in Section VIII, writing constant-time algo-

rithms in a high-level language is not in general sufficient.
Optimising compilers may rewrite the code, introduce branches,
and otherwise break the constant-time guarantees. Barthe et al.
[34] consider the problem of preserving side-channel coun-
termeasures, such as constant-time code, during compilation,
and present a framework for proving that a compilation pass
preserves such countermeasures.

Cauligi et al. [35] present a DSL for writing constant-time
cryptographic code and compiling it to LLVM bitcode. Their
DSL allows programmers to write familiar, high-level code with
variables annotated by security labels. Their compiler uses the
security labels to transform unsafe behaviour that depends on
secrets into constant-time code. They use the dudect analysis
tool [36] to check that machine code compiled from their
generated LLVM bitcode is constant-time.

Dantas et al. [37] investigate timing analysis countermeasures
in the presence of just-in-time compilation, such as in the
JavaVM. Their empirical results indicate that static countermea-
sures fare worse in this setting, while dynamic countermeasures
retain much of their effectiveness.

D. Resource-awareness
Hofmann and Jost [21] introduce linear potentials for

analysing the resource consumption of programs with linear
bounds. Hoffmann and Hofmann [22] extend the notion
of potentials to polynomial potentials, allowing analysis of
programs with polynomial bounds on resource consumption.
Krishnaswami et al. [38] explores the notion of potentials in
functional, reactive programming and present a language that
statically bounds the size of the data-flow graph of reactive
programs. Dehesa-Azuara et al. [39] explore a notion of
resource-aware noninterference in a setting without IO, where
the sizes of program values are known to the attacker.

X. CONCLUSION

We consider the problem of mitigating traffic analysis attacks
against online services and applications written in the reactive
programming model. We show that data-oblivious computation
is a natural fit for preventing timing-channels in this setting
when coupled with information-rich dummy traffic. We develop
the language OblivIO, a language for data-oblivious, reactive
programs. We prove that well-typed programs in the language
are secure against traffic analysis by convincingly padding

traffic with dummy messages, and we show that the overhead
introduced by our approach is bounded. We demonstrate the
expressiveness of our language by example and the practicality
of the language by developing an interpreter that implements
security critical operations as constant-time algorithms.
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