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Abstract—Traffic analysis attacks pose a major risk for online
security. Distinctive patterns in communication act as finger-
prints, enabling adversaries to de-anonymise communicating
parties or to infer sensitive information. Despite the attacks
being known for decades, practical solution are scarce. Network
layer countermeasures have relied on black box padding schemes
that require significant overheads in latency and bandwidth to
mitigate the attacks, without fundamentally preventing them, and
the problem has received little attention in the language-based
information flow literature. Language-based methods provide a
strong foundation for fundamentally addressing security issues,
but previous work has overwhelmingly assumed that interactive
programs communicate over secure channels, where messages
are undetectable by unprivileged adversaries. This assumption
is too strong for online communication where packets can be
trivially observed by eavesdropping. In this paper we introduce
SELENE, a small language for principled, provably secure
communication over channels where packets are publicly observ-
able, and we demonstrate how our program level defence can
reduce the latency and bandwidth overheads induced compared
with program-agnostic defence mechanisms. We believe that
our results constitute a step towards practical, secure online
communication.

Index Terms—Traffic analysis, noninterference, language-
based security

I. INTRODUCTION

Work on traffic analysis attacks has shown that many
systems and services are vulnerable to de-anonymisation and
loss of secrecy by producing distinctive patterns in their
network traffic. Traffic analysis has particularly been studied
in the context of anonymous communication and website
fingerprinting [12, 16, 22, 23, 28, 29, 32]. Defence strategies
against website fingerprinting are commonly done at the
network level [12], and rely on constant rate padding, where
source traffic is morphed to fit a predefined target pattern
[19]. Constant rate padding can be applied in a black box
fashion, making it an intuitively appealing technique against
website fingerprinting. However, it often falls short in practice
as achieving a high degree of security introduces intolerable
bandwidth and latency overheads for many applications [17],
such as anonymous, low-latency browsing and communication
[18] and privacy preserving IoT devices [1]. Cherubin et
al. argue that the application layer defences against traffic
analysis are more natural as they act directly on the objects
that are fingerprinted at the network level, while defences at
lower layers must model legitimate traffic in order to generate
convincing traffic padding [12].

Website fingerprinting is not the only attack made possible
by traffic analysis. Online services that process sensitive in-
formation are now ubiquitous and previous work has shown
that many such services are vulnerable to attack, as their
communication behaviour reveals system secrets. Analysis by
Chen et al. suggests that the scope of the issue is industry-
wide [11]. Their study finds that design features used for
creating reactive sites generate characteristic traffic patterns
that allow an adversary to infer highly detailed, sensitive
user information. They demonstrate this vulnerability across
a number of high-profile websites, e.g. they are able to infer
which illness a user selects on an online health site, and argue
that traffic analysis attacks pose an unprecedented threat to
the confidentiality of user information processed by online
systems, and that this information is often far more sensitive
than identifying which website a user visits as studied in
anonymity research.
Language-based information flow methods provide prin-

cipled ways of enforcing that the observable behaviour of
a program does not depend on secrets. The language-based
approach is appealing as the security condition of noninter-
ference [20] can be provably enforced using a type system.
O’Neill et al. formulate a noninterference condition for inter-
active programs [27], where programs communicate over in-
and output channels. Their condition requires that input on
secret channels does not influence output on public channels.
This condition has been used in a breadth of other work
[3, 8, 10, 13, 14, 21, 31]. Unfortunately, the models used
in these works assume that messages on secret channels are
invisible to adversaries. Other work models Internet commu-
nication using expressly public channels [25]. This makes
the security results inapplicable for reasoning about online
services and distributed programs where secret information
is shared between remote, trusted entities. The only other
work we are aware of, that allows an adversary to observe
the communication behaviour of a program on non-public
channels, is by Sabelfeld and Mantel [30]. They consider
encrypted channels that protect message contents, but do not
hide message presence, and give a timing-sensitive security
condition. Their security condition does not consider the size
of messages, which can be exploited in traffic analysis attacks,
and their semantics lets the blocking behaviour of receives on
encrypted channels be public by letting number of available
messages be public.



Even simple interactions are not secure when messages can
be eavesdropped. We demonstrate this using four example
programs that each highlight a different source of leaking. In
the following examples we consider a simple two point lattice
with elements {L, H} and ordering L ⊑ L, L ⊑ H, and H ⊑ H,
and adopt the convention that low variables start with l and
high variables start with h. For simplicity, we assume that
Public is a channel at level L and all other channels, e.g.
Alice, Bob, are at level H. We first consider a program, where
a number of messages are sent depending on the value of a
secret variable:

1 /* Program 1 - Message count */
2 h_count = 0;
3 while ( h_count < h_secret )
4 do {
5 out(Alice ,1);
6 h_count = h_count + 1;
7 }

Program 1 satisfies the common security conditions of pre-
vious works, as the value of secret variable h_secret only
influences secret output (line 5). However, if traffic can be
eavesdropped, the program is trivially insecure. By counting
the number of messages sent, an adversary can easily infer the
exact value of the secret, as the number of messages depends
on the secret.

We assume that each message is tagged with recipient
information and that the adversary can observe both the size
of each message and the time at which it was sent, i.e., the
adversary is timing-sensitive. These assumptions lead us to
naturally identify three other sources of leaks exemplified by
the following programs, where respectively the recipient, the
size, and the timing of messages leak secrets. These programs
would commonly be considered secure in previous work.

1 /* Program 2 - Recipient of message */
2 if (h) then {
3 out(Alice , 42);
4 } else {
5 out(Bob , 42);
6 }

1 /* Program 3 - Size of message */
2 if (h) then {
3 out(Alice , " Hello ");
4 } else {
5 out(Alice , "");
6 }

1 /* Program 4 - Time of message */
2 if (h) then {
3 out(Alice , 42);
4 } else {
5 sleep (100) ;
6 out(Alice , 42);
7 }

As the above examples suggest, many convenient patterns
in writing interactive programs are no longer secure when
messages can be eavesdropped.

In this paper, we show that program level padding can
be used for provably secure confidentiality against attackers

observing the network trace. We do this by introducing SE-
LENE, a Statically Enforced Language for Equivalence of
Network Events. SELENE is a simple imperative programming
language, that allows programmatic control over traffic shap-
ing. We show that well-typed programs in SELENE satisfy
timing-sensitive, progress-sensitive non-interference. We use a
knowledge-based definition of non-interference [4] and show
that an adversary learns no secrets by observing runs of well-
typed programs. We assume that communication channels
are partly observable. Namely, we assume that the presence
of messages and the associated meta-information is publicly
visible, while the contents of messages is only visible to
trusted parties.
Our strategy for preventing traffic analysis attacks is to pro-

vide programmatic control over traffic shaping. We do this by
splitting message sending into two distinct concepts: message
allocation and message population. To this end, SELENE uses
two novel language primitives, schedule and queue, that
respectively allocate a number of packets to be sent on a
channel and add to a buffered output queue for a channel. This
simple strategy allows for utilising program level information
to keep latency and bandwidth overheads low when compared
with black-box padding. This property is particularly beneficial
for resource constrained systems. However, the strategy also
comes with a downside, namely a restriction to when new
traffic may be scheduled.
We present the formal semantics of the language in Section

II, but here present a few program examples possible in the
language.
Consider a scenario where a doctor has asked a patient

to take a home-test for an illness and to return the result.
Depending on the result, the doctor may make a referral to
a specialist clinic. Any message sent from the doctor to the
clinic is publicly observable and plainly sending a referral will
naturally leak that the patient returned a positive test result.
However, if the doctor commits ahead of time to sending some
message to the clinic, regardless of the results of the test, the
confidentiality of the patient’s information can be protected.

1 /* Program 5 - Referral */
2 // Size of int
3 l_size = sizeof (0);
4

5 // Send to specialist in 300 time units
6 schedule (Clinic ,l_size ,300) ;
7

8 // Get id and test result from patient
9 h_id = in( Patient );

10 h_is_positive = in( Patient );
11

12 if ( h_is_positive ) then {
13 queue (Clinic ,h_id);
14 } else {
15 skip;
16 }

On line 6, the doctor schedules a send to the clinic in 300
time units. They await messages from the patient containing
id number (line 9) and the test result (line 10), and if positive,
the doctor queues a referral to the clinic (line 13). This strategy
is somewhat optimistic as it may take more than 300 time units
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for the patient to send the result to the doctor. In this case,
or in case the test result is negative, nothing will be queued
to the clinic before the send occurs. If the queue is empty at
the time of a scheduled send, dummy packets are sent instead.
When, to whom, and how much the doctor sends is thereby
made public, while what the doctor sends is kept secret.
As a second example, we consider the password checker in

Program 6.
1 /* Program 6 - Password checker */
2 string h_password ;
3 int h_token ;
4 l_size_ok = sizeof ( h_token );
5 l_size_bad = sizeof (" LOGIN FAILED ");
6

7 schedule (Alice ,max(l_size_ok , l_size_bad ) ,100);
8 h_guess = in( Alice );
9 if ( h_guess == h_password ) then {
10 queue (Alice , h_token );
11 } else {
12 queue (Alice ," LOGIN FAILED ");
13 }

The password checker stores a secret password and returns
a token to be used as proof of authority upon receiving a
successful guess. The password checker schedules bandwidth
for sending either the token or a login failure message by using
the maximum of the two sizes. By scheduling the response
before the guess is received, the program does not leak whether
a valid guess was received, let alone whether the guess was
correct.

As a final example, we consider a small popularity poll.
Alice wishes to know whether her opinion that dogs are better
than cats is shared by a majority of people. She sets up a
simple online voting service running Program 7 below:

1 /* Program 7 - Popinion */
2 /* Alice asks: Are cats or dogs better ?
3 Vote: Cats = 1, Dogs = -1 */
4 int h_my_vote ;
5 l_tally = 0;
6 l_count = 0;
7

8 while ( l_count < 10)
9 do {
10 l_vote = in( Public );
11 if ( l_vote == -1 || l_vote == 1) then {
12 l_tally = l_tally + l_vote ;
13 } else {
14 skip;
15 }
16 l_count = l_count + 1;
17 }
18

19 // Size of the longest message
20 l_size = sizeof ("Most disagree ");
21 schedule (Alice , l_size , 100);
22

23 if ( h_my_vote * l_tally > 0) then {
24 queue (Alice , "Most agree ");
25 } else if ( h_my_vote * l_tally < 0) then {
26 queue (Alice , "Most disagree ");
27 } else {
28 queue (Alice , "Tie");
29 }

The voting service stores Alice’s secret choice in variable
h_my_vote, tallies ten votes from a public channel, and

schedules sending to Alice using the size of the longest
message and time based on an estimate of what is needed
for the branching. Inferring upper bounds on the time needed
for queuing is orthogonal to the work in this paper and we
opt for using simple estimates. Finally, the service computes
whether a majority agrees or disagrees with Alice and sends
a corresponding message. We observe that no bandwidth is
needed until ten votes have been received by the service.
Since it cannot be determined statically when this occurs our
approach reduces the traffic overhead induced compared with
constant rate padding schemes as it allows scheduling of traffic
on an as-needed basis, as long as the program context is public.
The main contributions of this paper are:
∙ We spotlight the gap in the assumptions made in the
language-based information flow literature for interactive
programs and the channels available for real-world, online
communication.

∙ We introduce SELENE, a language for using channels
with observable traffic information in a principled and
provably secure way, thereby recovering the strong secu-
rity guarantees of language-based techniques.

∙ We introduce a novel model that combines program and
runtime behaviour in a single small-step semantics, and
give a knowledge-based security condition for timing-
sensitive, progress-sensitive noninterference.

∙ We provide a progress-sensitive type system using both
values of a fixed size type and values of a variable size
type.

∙ We prove soundness of our type system, thereby obtaining
a static guarantee that well-typed programs in SELENE
do not leak via traffic patterns.

The remainder of this paper is structured as follows. In
Section II we specify the threat model and provide the syntax
and semantics of SELENE. We define attacker knowledge
and give a strong security condition against traffic analysis
attacks in Section III. We present the security type system for
SELENE and prove it sound in Section IV. Finally, we discuss
our work in Section V and give related work in Section VI,
before we conclude in Section VII.

II. SECURITY MODEL AND LANGUAGE

This section presents our model and the syntax and seman-
tics of our language.

A. Security model
SELENE is an interactive, imperative language for single

threaded, interactive programs with blocking receives. The
language is largely standard, apart from our message sending
primitives and command sizeof for computing the size of
a value. We assume a standard security lattice  of security
levels l, with distinguished top and bottom elements, ⊤ and
⊥, lattice ordering ⊑, and least upper bound operation ⊔. Each
variable has a fixed security level that does not change during
execution.
As is standard in prior work on information flow control,

we focus on confidentiality at the local node. Remote nodes
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trusted at some level l are also trusted to appropriately protect
information sent to them up to level l. We further assume that
remote nodes are also running SELENE programs. We model
incoming traffic using lists. This modelling choice was shown
equivalent to functional strategies for modelling deterministic,
interactive programs by Clark and Hunt [13]. To this end, we
consider an input environment I mapping each channel to a
(possibly empty) list of input packets and let program values
be obtainable from a sequence of packets corresponding to the
value. For simplicity, we identify channels by their security
level.

We observe that traffic analysis attacks exploit patterns in
traffic to make inferences about the secret state of a system
without requiring that the adversary can read the contents
of packets. We therefore make the simplifying assumption
that the contents of packets are sufficiently protected against
adversaries, e.g. by using encryption, but allow the adversary
to observe the presence, recipient, and time of packets. We
assume that packets are of fixed size, thereby transforming
the question of packet size into a question of packet count.

B. Threat model
We consider interactive, distributed programs that commu-

nicate with remote network nodes. We consider an active
adversary who is trusted at a security level ladv, who knows
the program being run on the local node, and who knows initial
secrets up to level ladv. Additionally, the adversary eavesdrops
on incoming and outgoing encrypted communication of the
local node, observing packet presence, timing, and the re-
mote communication party. Communication on a channel is
encrypted corresponding to the security level of the channel,
and the adversary can decrypt and read packets on channels
up to security level ladv. The objective of the adversary is to
refine their knowledge on initial secrets.

C. The language and program semantics

e ∶∶= n ∣ s ∣ x ∣ e ⊕ e
c ∶∶= x = e ∣ c; c ∣ skip ∣ sleep(e) ∣ x = sizeof(e)

∣ if e then c else c ∣ while e do c
∣ x = in(l) ∣ schedule(l, e, e) ∣ queue(l, e)

Figure 1. Syntax of the language

Figure 1 presents the syntax of our language. We explain
the formal semantics and explain the nonstandard features.

We use a big-step semantics for evaluating expressions and
assume these take unit time. The rules are standard and are
given in Fig. 2. We let ⊕ range over total operations on
arithmetic expressions. The values of our language are integers
n and strings s. We let Int denote the set of integers and
String denote the set of strings and let Val = Int ⊎ String.

v ∈ Val

⟨v, m⟩ ⇓ v

m(x) = v

⟨x, m⟩ ⇓ v

⟨e1, m⟩ ⇓ v1 ⟨e2, m⟩ ⇓ v2 v = v1 ⊕ v2
⟨e1 ⊕ e2, m⟩ ⇓ v

Figure 2. Semantics for evaluating expressions

Programs are typed using fixed typing environment Γ. We
write Γ(x) = �@l to denote that variable x has type � and
security level l. The types of our language are int and stringl ,
where l is the security level of the size of the string. Input
packets either contain (part of) an input value, or are dummy.
We write v jN to denote the j’th of N packets encoding value
v and let ∙ denote dummy packets.
For evaluating program commands c we use a small-step

semantics transition ⟨c, m, I⟩
ts
←←←←←←←→� ⟨c′, m′, I ′⟩, where m is a

memory, I is an input environment, and � is a program event
generated by the step. Program steps take place at a time
ts, however they do not increment time. We instead define
a global semantics on top of the program semantics and let
global steps increment time. We discuss the global semantics
shortly. Program events can be empty, denoted by �, or an
assignment, enqueue, scheduling, or input event as given by
the following grammar:

� ∶∶= � ∣ a(x, v) ∣ q(l, v) ∣ s(l, n, n) ∣ i(l, x, v)

Fig. 3 presents the stepping rules of our program operational
semantics.
SizeOf: Command sizeof evaluates an expression to ob-

tain a value and returns the number of packets needed to
store that value. This is useful as the language requires the
programmer to explicitly schedule the number of packets they
wish to send. We assume a fixed packet size �, and assume
that all integers are of fixed size, and that the size of a string
is dependent on the length of the string.
In: The transitions of our small-step semantics for program

commands are parametric in timestamps ts, allowing us to
model blocking by conditioning transitions on ts. We model
network input using primitive x = in(l). To preserve the
type of variable x, the input primitive determines whether
m(x) is an integer or a string value, captured by set A in
rule IN, and uses this as argument for auxiliary function
choose (Fig. 4), along with the packet sequence for channel
l and timestamp ts. Function choose is a partial function,
modelling the potential for blocking. The choose function adds
packets of the appropriate type to an accumulator used for
decoding an input value, and steps over packets of other type,
discarding any dummy packets. It returns a decoded value and
the remaining packet sequence for the channel if successful.
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ASSIGN
⟨e, m⟩ ⇓ v

⟨x = e, m, I⟩
ts
←←←←←←←→a(x,v) ⟨stop, m[x↦ v], I⟩

SIZEOF

⟨e, m⟩ ⇓ v n =
⌈

size(v)
�

⌉

⟨x = sizeof(e), m, I⟩
ts
←←←←←←←→a(x,n) ⟨stop, m[x↦ n], I⟩

SKIP

⟨skip, m, I⟩
ts
←←←←←←←→� ⟨stop, m, I⟩

SEQ-1

⟨c1, m, I⟩
ts
←←←←←←←→� ⟨c′1, m

′, I ′⟩ c′1 ≠ stop

⟨c1; c2, m, I⟩
ts
←←←←←←←→� ⟨c′1; c2, m

′, I ′⟩

SEQ-2

⟨c1, m, I⟩
ts
←←←←←←←→� ⟨stop, m′, I ′⟩

⟨c1; c2, m, I⟩
ts
←←←←←←←→� ⟨c2, m

′, I ′⟩

SLEEP
⟨e, m⟩ ⇓ w w ≥ 0 r = ts +w

⟨sleep(e), m, I⟩
ts
←←←←←←←→� ⟨await(r), m, I⟩

AWAIT
ts ≥ r

⟨await(r), m, I⟩
ts
←←←←←←←→� ⟨stop, m, I⟩

IF-T
⟨e, m⟩ ⇓ v v ≠ 0

⟨if e then c1 else c2, m, I⟩
ts
←←←←←←←→� ⟨c1, m, I⟩

IF-E
⟨e, m⟩ ⇓ 0

⟨if e then c1 else c2, m, I⟩
ts
←←←←←←←→� ⟨c2, m, I⟩

WHILE

⟨while e do c, m, I⟩
ts
←←←←←←←→� ⟨if e then c; while e do c else skip, m, I⟩

IN
A ∈ {Int, String} m(x) ∈ A I(l) = p⃗ (v, q⃗) = choose(p⃗, A, ts, [])

⟨x = in(l), m, I⟩
ts
←←←←←←←→i(l,x,v) ⟨stop, m[x↦ v], I[l ↦ q⃗]⟩

SCHEDULE
⟨e1, m⟩ ⇓ n ⟨e2, m⟩ ⇓ w w ≥ 0 t = ts +w

⟨schedule(l, e1, e2), m, I⟩
ts
←←←←←←←→s(l,n,t) ⟨stop, m, I⟩

QUEUE
⟨e, m⟩ ⇓ v

⟨queue(l, e), m, I⟩
ts
←←←←←←←→q(l,v) ⟨stop, m, I⟩

Figure 3. Local operational semantics

choose(p⃗, A, t, acc) ≜

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(v, p⃗) if acc = v 1N ∷ … ∷ v NN
(vr, r⃗) if p⃗ = (t′, v jN ) ⋅ q⃗ s.t. v ∈ A and t′ ≤ t and choose(q⃗, A, t, acc ∷ v jN ) = (vr, r⃗)
(vr, (t′, v

j
N ) ⋅ r⃗) if p⃗ = (t′, v jN ) ⋅ q⃗ s.t. v ∉ A and t′ ≤ t and choose(q⃗, A, t, acc) = (vr, r⃗)

(vr, r⃗) if p⃗ = (t′, ∙ ) ⋅ q⃗ s.t. t′ ≤ t and choose(q⃗, A, t, acc) = (vr, r⃗)

Figure 4. Choose function

We let the packets be annotated with timestamps and require
that all packets corresponding to a value have been received
before the value can be obtained. That is, the timestamp of
the final packet must be at or before the timestamp in the
transition of the in command. If no value can be retrieved,
the program blocks and cannot step.

We model internal input (e.g. reading files) only abstractly,
by considering them bound in program variables.

Schedule and queue: The schedule command takes three
arguments; a channel, a number of packets to be sent, and
a delay before sending the packets. This issues a request to
the runtime system. We describe the runtime system shortly.
Command queue takes a channel and an expression as argu-
ments and evaluates the expression to obtain a value. It then
instructs the runtime system to add the value to a buffered
output queue associated with the channel.
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Internal commands: Commands await and stop are only
used internally and are therefore not part of the language
syntax. Command await is reached from command sleep
and blocks for a specified duration of time. Command stop
denotes a final program configuration that cannot step any
further.

D. The runtime and the global semantics
A key feature of our model is the global configuration

modelling the language runtime. The runtime maintains the
output queues in output environment O and processes the
packet schedule �. We present a small-step semantics for
the global transitions in Fig. 5. We explain the interaction
between the program configuration and global configuration in
more detail. We let the global configuration contain a program
configuration and require that the program steps whenever
possible. For the sake of brevity, we let P denote a program
configuration ⟨c, m, I⟩. Program steps are done by rule G-
STEP and emit a possibly empty event �. We let the program
communicate updates to the runtime through schedule and
queue events. To this end, we apply update function upd (Fig.
6) to the schedule and output environment using event �. If
the program step emits a queue event q(l, v), value v is split
into a number of packets based on the size of the value, and
the packets are added to the buffered output queue for channel
l. If the program step emits a schedule event s(l, n, t), we
use function rsv to reserve time in the schedule for a number
of packets on a channel by recursively adding to dom(�).
We assume that the schedule is never full, i.e. the function
will terminate having scheduled all n packets. We make the
simplifying assumption that at most one packet can be sent in
any single step and formally model the schedule as a partial
function from timestamps to channels.

To model packets being sent, we extend the grammar for
events with runtime events �. The runtime emits an empty
event if the schedule is undefined for the current timestamp,
otherwise we use function send defined below to obtain
an event corresponding to the first packet in the scheduled
channel’s output queue, and an updated output environment.
If no packets are queued on the channel, an empty dummy
packet is generated and sent.

send(O,l) ≜
{

(o(l, p), O[l ↦ q⃗]) if O(l) = p ⋅ q⃗
(o(l, ∙ ), O) if O(l) = []

To combine program generated events � with runtime gener-
ated events � we let global events  be a triple (ts ∶ �, �),
where ts is the timestamp of the event. The observations an
attacker makes on a run of a program are given by a trace
of global events, each containing the timestamp of the step,
leading to a timing-sensitive model. While a network attacker
does not observe program events �, maintaining them in global
events is nevertheless useful, as it allows us to more easily
reason about the exact state of a run. In Section III, we define
our security condition in terms of an attacker that does not
observe program events, i.e., that observes all program events
as the empty event �.

We extend the grammar as follows:

� ∶∶= � ∣ o(l, p)
 ∶∶= (ts ∶ �, �)

The global configuration maintains clock ts that is incre-
mented for each step. If a program configuration is blocking,
that is, if it cannot take a step at the current timestamp, but
has not stopped with command stop, the global configuration
steps by G-BLOCK, processing the runtime and incrementing
the clock. Finally, G-STOP allows the global configuration to
continue processing the runtime after the program configura-
tion has reached command stop, provided there are scheduled
packets left to process.

III. SECURITY CONDITION

In this section we present the security condition for timing-
sensitive, progress-sensitive noninterference.
We define our security condition using the knowledge-based

approach [2]. The insight of this approach is to consider
what an attacker observes during the execution of a program
and define knowledge as the set of initial states that are
consistent with seeing the execution up to this point. The
security condition is then defined as a bound on how much
the knowledge is allowed to change for each step of the
execution. In this paper we do not consider declassification and
we therefore require that attacker knowledge does not change
with new observations.

A. Auxiliary definitions
We define attacker knowledge and timing-sensitive,

progress-sensitive noninterference in terms of an equivalence
relation on program configurations and the attacker observable
trace emitted from a run. We give these auxiliary definitions
before proceeding to define the security condition.
To denote that two memories are equivalent up to ladv we

write m ≈ladv m
′ (Definition 1).

Definition 1 (Memory equivalence up to level). Two mem-
ories m and m′ are equivalent up to level ladv, written
m ≈ladv m

′, if for all x ∈ dom(Γ) both the following hold:
1) Γ(x) = �@l ∧ l ⊑ ladv ⟹ m(x) = m′(x)
2) Γ(x) = stringl′@l ∧ l′ ⊑ ladv ⟹ size(m(x)) =

size(m′(x))

This definition captures that the values of attacker observ-
able variables must have the same value, and that the size of
the value of variables must be the same if the size is attacker
observable.
We overload the notation and write I ≈ladv I

′ to denote that
two input environments are equivalent up to ladv (Definition
2). The definition requires equality of incoming packets on
attacker observable channels, and uses relation ≈net

ladv
for high

channels, requiring that these receive packets at the same
timestamps. This captures an attacker that can observe the
presence of incoming packets on all channels and when they
arrive, but who cannot read the contents of packets on high
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G-STEP

P
ts
←←←←←←←→� P

′ (O′, �′) = upd(O, �, �) (�, O″) =

{

(�, O′) if ts ∉ dom(�′)
send(O′,l) if �′(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P ′, O″, �′, ts + 1⦊

G-BLOCK

∄P ′ ∶ P
ts
←←←←←←←→� P

′ P = ⟨c, m, I⟩ c ≠ stop (�, O′) =

{

(�, O) if ts ∉ dom(�)
send(O,l) if �(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P ,O′, �, ts + 1⦊

G-STOP

P = ⟨stop, m, I⟩ ∃ts′ ∈ dom(�) ∶ ts′ ≥ ts (�, O′) =

{

(�, O) if ts ∉ dom(�)
send(O,l) if �(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P ,O′, �, ts + 1⦊

Figure 5. Global operational semantics

split(v) ≜ v 1N ⋅… ⋅ v NN where N =
⌈

size(v)
�

⌉

rsv(�,l, n, t) ≜

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�r if n > 0 and t ∉ dom(�) and
rsv(�[t ↦ l],l, n − 1, t + 1) = �r

�r if n > 0 and t ∈ dom(�) and
rsv(�,l, n, t + 1) = �r

� if n ≤ 0

upd(O, �, �) ≜

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(O′, �) if � = q(l, v), split(v) = p⃗,
O(l) = q⃗, and O[l ↦ (q⃗ ⋅ p⃗)] = O′

(O, �′) if � = s(l, n, t) and
rsv(�,l, n, t) = �′

(O, �) otherwise

Figure 6. Runtime function

channels. We assume that incoming packets are sent by other
SELENE programs and hence are of fixed size.

Definition 2 (Input environment equivalence up to level). Two
input environments I and I ′ are equivalent up to level ladv,
written I ≈ladv I

′, if

l ⊑ ladv ⟹ I1(l) = I2(l)
l ⋢ ladv ⟹ I1(l) ≈net

ladv
I2(l)

I1 ≈ladv I2

where ≈net
ladv

is defined by

[] ≈net
ladv

[]

p⃗ ≈net
ladv

q⃗

(t, p1) ⋅ p⃗ ≈net
ladv

(t, p2) ⋅ q⃗

We lift equivalences to program configurations in a straight
forward way in Definition 3.

Definition 3 (Program configuration equivalence up to level).
Two program configurations ⟨c1, m1, I1⟩ and ⟨c2, m2, I2⟩ are
equivalent up to level ladv, written

⟨c1, m1, I1⟩ ≈ladv ⟨c2, m2, I2⟩

if it holds that c1 = c2, m1 ≈ladv m2, and I1 ≈ladv I2.

We overload the notation even further and write O ≈ladv O
′

to denote that two output environments are equivalent up to
ladv (Definition 4).

Definition 4 (Output environment equivalence up to level).
Two output environments O1 and O2 are equivalent up to level
ladv, written O1 ≈ladv O2, if

l ⊑ ladv ⟹ O1(l) = O2(l)

O1 ≈ladv O2

Next, we define runtime event projections. Runtime event
projection captures the observable parts of output events emit-
ted by the runtime. We write ⌊�⌋ladv to denote the projection
of runtime event � to level ladv (Definition 5). We introduce a
new event capturing the sending of packets with unobservable
content. We extend the grammar for runtime events as follows:

� ∶∶= … ∣ o(l,−)

7



Runtime event o(l, p) projects to o(l,−) if the level of the
channel does not flow to the level being projected to. This
captures the assumption that the contents of packets can be
securely hidden by cryptography, while the presence of packets
and their recipient remain visible.

Definition 5 (Runtime event projection). The projection of
runtime event � to level ladv, written ⌊�⌋ladv , is defined as

⌊�⌋ladv = �

⌊o(l, p)⌋ladv =
{

o(l, p) if l ⊑ ladv
o(l,−) if l ⋢ ladv

We write � ↾ ladv to denote the filtering of trace � to what
is visible at level ladv (Definition 6). We use this to restrict
attacker knowledge to the steps where observable events are
emitted. This allows us to consider secure programs such as
if h then sleep(10) else skip, as no output occurs af-
ter branching on the secret. We let trace filtering fix the empty
event � as the program event component, thereby removing all
program events emitted. This captures a network attacker, that
only obtains new information by observing packets being sent.

Definition 6 (Trace filtering). The filtering of a trace � to
level ladv, written � ↾ ladv, is defined as

� ↾ ladv = �
(�′ ⋅ (ts ∶ �, �)) ↾ ladv =

{

�′ ↾ ladv ⋅ (ts ∶ �, ⌊�⌋ladv ) if ⌊�⌋ladv ≠ �
�′ ↾ ladv otherwise

As two final building blocks, we let Oinit denote the initially
empty output environment and let �init denote the initially
empty schedule. That is,

∀l ∈  ∶ Oinit(l) = []
dom(�init) = ∅

B. Knowledge and noninterference
Using the above we define the knowledge of an attacker

at level ladv after observing trace �. This definition follows
the style of other knowledge-based security conditions [5],
and intuitively states that an attacker may not refine their
knowledge by observing new events.

Definition 7 (Attacker knowledge). Given a program config-
uration P , such that ⦉P ,Oinit, �init, 0⦊ →→∗

� ⦉P ′, O′, �′, ts′⦊,
the attacker knowledge at level ladv is the set of program
configurations P2, that are consistent with observations at that
level:

k(P , �,ladv) ≜
{P2 ∣ P ≈ladv P2 ∧
⦉P2, Oinit, �init, 0⦊ →→∗

�2
⦉P ′2 , O

′
2, �

′
2, ts

′
2⦊ ∧

(� ↾ ladv) = (�2 ↾ ladv)}

Using the definition of attacker knowledge we define timing-
sensitive, progress-sensitive noninterference.

Definition 8 (Timing-sensitive, progress-sensitive noninterfer-
ence). Given program configuration P such that

⦉P ,Oinit, �init, 0⦊ →→∗
�⋅ ⦉P

′, O′, �′, ts′⦊

the run satisfies timing-sensitive, progress-sensitive noninter-
ference if for all ladv it holds that

k(P , � ⋅ ,ladv) ⊇ k(P , �,ladv)

This definition states that memories and input environments
considered possible before observing global event  are also
considered possible after observing  , capturing that the ad-
versary learns nothing by observing the event. To demonstrate
the security condition, we rewrite Program 3 from Section I
in the syntax of SELENE. We consider one run where secret
variable h is set to 1 and another where it is set to 0, and
assume that n+1 packets are needed to send a string of length
n.

1 /* Program 3b */
2 if (h) then {
3 queue (Alice , " Hello ");
4 size = sizeof (" Hello ");
5 schedule (Alice ,size ,0);
6 } else {
7 queue (Alice , "");
8 size = sizeof ("");
9 schedule (Alice ,size ,0);

10 }

In the first run, 6 packets are scheduled and sent on channel
Alice in order to send the string. In the second run, only
a single packet is scheduled and sent. As the presence of
every packet is observable to the attacker, they can distinguish
between the two runs when a second packet is sent, hence
violating Definition 8.

IV. ENFORCEMENT

In this section we present the security type system for
SELENE and prove that all runs of well-typed programs satisfy
timing-sensitive, progress-sensitive noninterference. Despite
considering an attacker that observes only network events,
timing-sensitivity makes the attacker quite strong. We settle for
a rather restrictive type system that is secure against a stronger,
internal attacker and we use this to show security for a network
attacker. Previous work on noninterference for interactive pro-
grams by O’Neill et al. [27] achieves a more permissive type
system by assuming a timing-insensitive attacker, disallowing
high-loops, and assuming that new input is always available,
thereby ruling out high-divergence of programs. Unfortunately,
timing-insensitive attacker models are insufficient for external
attackers, such as the network attacker we consider, as we
cannot restrict an attacker’s access to timing channels.
As our security condition is timing-sensitive and progress-

sensitive, our typing judgements are progress-sensitive. They
are of the form

Γ, pc ⊢ c ∶ pc′

where pc is the program counter before typing the command
and pc′ is the program counter after. As we do not consider pc-
declassification in this paper, the program counter never goes
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down. This leads to so-called pc-creep, which significantly
restricts the programs that can be written in the language.
We leave it to future work to explore language primitives for
mitigating this and to investigate the security impact of pc-
declassification on traffic analysis attacks.

A. Type system
The definitions of memory equivalence and event projection

in Section III implicitly require a well-formedness condition
on security types of variables in Γ. We now formally state this
condition and assume for the rest of the paper that all variables
in Γ have well-formed security types.

⊢wf int@l
l′ ⊑ l

⊢wf stringl′@l
The intuition behind the well-formedness condition is that
knowing a value implies knowing its size, but not the other
way around. Next, we define subtyping relation <∶. The
relation is straight forward, using lattice ordering ⊑ on size
levels as a condition on strings.

int <∶ int
l1 ⊑ l2

stringl1 <∶ stringl2
We write � ↗ l to denote raising type � to at least level l.
This is used to account for pc-taint when assigning strings,
to prevent string size from leaking secrets. This allows us to
concisely write the conditions for the typing rules.

� ↗ l ≜

{

int if � = int
string(l⊔l′) if � = stringl′

The type system for expressions is presented in Fig. 7. The
rules are standard, except for the rule for string expressions.
This rule follows from the well-formedness condition on
security types, and intuitively as the string appears in the
program text, hence the size of the string is public.

n ∈ Int

Γ ⊢ n ∶ int@⊥
s ∈ String

Γ ⊢ s ∶ string⊥@⊥ Γ ⊢ x ∶ Γ(x)

Γ ⊢ e1 ∶ int@l1 Γ ⊢ e2 ∶ int@l2
Γ ⊢ e1 ⊕ e2 ∶ int@l1 ⊔ l2

Figure 7. Type system for expressions

We present our type system for commands in Fig. 8 and
explain the nonstandard rules.

SizeOf: Rule T-SIZEOF expresses that the size of an integer
value may be assigned to a variable conditioned only by pc.
This is intuitively safe as integers have fixed size. The size of
a string value may be assigned to a variable if the variable is
at least as secret as the least upper bound of pc and the size
level of the string.

In: Rule T-IN is similar to input rules in previous work. We
require that the level of pc flows to the level of the channel l.
This is to preserve low equivalence of the input environment
during steps under high pc. As a non-standard condition, the
rule uses type raising and the subtyping relation to require
�x ↗ l <∶ �x. For �x = int, this condition is trivially
satisfied by the definitions. For �x = stringl′ , this condition
corresponds to the condition l ⊑ l′. Intuitively, we consider
both the size and the value of a received strings to be as secret
as the level of the channel.
Schedule and queue: Rule T-SCHEDULE restricts schedule

commands to public pc and restricts the integer arguments to
also be public. These conditions are natural, as we assume that
traffic is publicly observable. As a consequence of progress-
sensitive typing, a schedule command cannot occur after the pc
has been tainted. The queuing of messages is by rule T-QUEUE
less restrictive, and is akin to rules for sending in previous
information flow literature.
We note in particular that Programs 5, 6, and 7 from Section

I are typeable by the typing rules, while the rewritten Program
3b from Section III is not as it performs scheduling after
branching on a high variable.

B. Program configuration
We show soundness of our security type system in a number

of steps. We show that the type system of SELENE is secure
against a stronger, internal attacker and show that this implies
security against an external attacker. This is intuitively safe as
the external attacker has weaker observational power.
We begin by defining well-formedness conditions on mem-

ories (Definition 9) and program configurations (Definition
10). These conditions are standard. We define memory m to
be well-formed with respect to typing environment Γ in the
straight forward way.

Definition 9 (Well-formedness of memory w.r.t. a typing
environment). Given a memory m and a typing environment
Γ, we say that m is well-formed w.r.t. Γ if for all x ∈ dom(Γ)
we have
(1) m(x) ∈ Int ⟹ Γ(x) = int@l
(2) m(x) ∈ String ⟹ Γ(x) = stringl′@l

We define program configuration ⟨c, m, I⟩ to be well formed
with respect to a typing environment Γ and program counters
pc, pc′ if c is stop of if c is typable, and if m is well-formed
with respect to Γ.

Definition 10 (Well-formedness of program configurations).
We say that program configuration ⟨c, m, I⟩ is well-formed
w.r.t. a typing environment Γ and levels pc, pc′ when both the
following hold:
(1) either c is stop or the program is well-typed, i.e., Γ, pc ⊢

c ∶ pc′
(2) m is well-formed w.r.t. Γ

Steps of the program preserve well-formedness by Lemma
1. The proof can be found in the accompanying technical
report.
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T-ASSIGN
Γ ⊢ e ∶ �e@le �e ↗ pc <∶ �x
Γ(x) = �x@lx le ⊔ pc ⊑ lx

Γ, pc ⊢ x = e ∶ pc

T-SKIP

Γ, pc ⊢ skip ∶ pc

T-SLEEP
Γ ⊢ e ∶ int@l

Γ, pc ⊢ sleep(e) ∶ pc ⊔ l

T-SIZEOF
Γ ⊢ x ∶ int@lx Γ ⊢ e ∶ �e@le pc ⊑ lx �e = stringl′ ⟹ l′ ⊑ lx

Γ, pc ⊢ x = sizeof(e) ∶ pc

T-AWAIT

Γ, pc ⊢ await(r) ∶ pc

T-IF
Γ ⊢ e ∶ int@l Γ, pc ⊔ l ⊢ c1 ∶ pc′ Γ, pc ⊔ l ⊢ c2 ∶ pc″

Γ, pc ⊢ if e then c1 else c2 ∶ pc′ ⊔ pc″

T-SEQ
Γ, pc ⊢ c1 ∶ pc′ Γ, pc′ ⊢ c2 ∶ pc″

Γ, pc ⊢ c1; c2 ∶ pc″

T-WHILE
Γ ⊢ e ∶ int@l Γ, pc ⊔ l ⊢ c ∶ pc′

Γ, pc ⊢ while e do c ∶ pc′

T-IN
Γ ⊢ x ∶ �x@lx pc ⊑ l �x ↗ l <∶ �x l ⊑ lx

Γ, pc ⊢ x = in(l) ∶ l

T-SCHEDULE
pc = ⊥ Γ ⊢ e1 ∶ int@⊥ Γ ⊢ e2 ∶ int@⊥

Γ, pc ⊢ schedule(l, e1, e2) ∶ pc

T-QUEUE
Γ ⊢ e ∶ �e@le le ⊔ pc ⊑ l

Γ, pc ⊢ queue(l, e) ∶ pc

Figure 8. Type system for commands

Lemma 1 (Preservation of well-formedness). Let Γ be a typing
environment, pc, pc′ be two levels, and ⟨c, m, I⟩ be a program
configuration, such that the ⟨c, m, I⟩ is well-formed w.r.t. Γ,
pc, and pc′. Suppose this configuration takes a step

⟨c, m, I⟩
ts
←←←←←←←→� ⟨c′, m′, I ′⟩

Then there exists pc″ such that pc ⊑ pc″ ⊑ pc′ and such that
the resulting program configuration ⟨c′, m′, I ′⟩ is well-formed
w.r.t. Γ, pc″, and pc′.

To reason about what an internal attacker learns from
observing a run, we define projection of program events �
to level ladv (Definition 11) capturing the attacker observable
changes to the internal state of the system. As our model
distinguishes between the secrecy levels of the size of a string
and its value, we extend the grammar for program events with
an event capturing that a string of size s was assigned to
variable x.

� ∶∶= … ∣ |a|(x, s)

As program event projection is similar to runtime event
projection, we use similar notation, but annotate with a bullet
to signify that these relate to internal state.

Definition 11 (Program event projection). The projection of
program event � to level ladv, written ⌊�⌋∙ladv , is defined as

⌊�⌋∙ladv = �
⌊s(l, n, w)⌋∙ladv = s(l, n, w)

⌊a(x, v)⌋∙ladv =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a(x, v) if Γ(x) = �@l s.t. l ⊑ ladv
|a|(x, s) if Γ(x) = stringl′@l

s.t. l ⋢ ladv ∧ l′ ⊑ ladv
∧ size(v) = s

� otherwise

⌊q(l, v)⌋∙ladv =
{

q(l, v) if l ⊑ ladv
� if l ⋢ ladv

⌊i(l, x, v)⌋∙ladv =
{

i(l, x, v) if l ⊑ ladv
� if l ⋢ ladv

We define internal trace filtering using program event pro-
jection in the straight forward way. We again filter out global
events where no observable program or runtime events are
emitted to prevent the attacker from observing termination.
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Definition 12 (Internal trace filtering). The internal filtering
of a trace � at level ladv, written � ↾∙ ladv, is defined as

� ↾∙ ladv = �
(�′ ⋅ (ts ∶ �, �)) ↾∙ ladv =

⎧

⎪

⎨

⎪

⎩

�′ ↾∙ ladv ⋅ (ts ∶ ⌊�⌋∙ladv , ⌊�⌋ladv ) if ⌊�⌋∙ladv ≠ �

or ⌊�⌋ladv ≠ �
�′ ↾∙ ladv otherwise

Using internal trace filtering, we define internal knowledge.
This definition mirrors attacker knowledge, except for using
internal trace filtering, thereby giving additional power to the
attacker.

Definition 13 (Internal knowledge). Given a program con-
figuration P , such that ⦉P ,Oinit, �init, 0⦊ →→∗

� ⦉P
′, O′, �′, ts′⦊,

internal knowledge at level ladv is the set of program config-
urations P2, that are consistent with observations at that level:

k∙(P , �,ladv) ≜
{P2 ∣ P ≈ladv P2 ∧
⦉P2, Oinit, �init, 0⦊ →→∗

�2
⦉P ′2 , O

′
2, �

′
2, ts

′
2⦊ ∧

(� ↾∙ ladv) = (�2 ↾∙ ladv)}

Lemma 2 captures that an internal attacker is indeed
stronger than an external attacker by giving internal knowledge
as a lower bound on attacker knowledge. This lemma allows
us to relate the result we obtain for an internal attacker to
the external attacker we consider in our threat model, thereby
enabling us to show the type system of SELENE sound with
respect to Definition 8. We refer to the accompanying technical
report for the proof.

Lemma 2 (Internal knowledge refines external knowledge).
For any program configuration P , trace �, and level ladv,
the knowledge of an external attacker is less precise than the
knowledge of an internal attacker. That is,

k(P , �,ladv) ⊇ k∙(P , �,ladv)

In defining the knowledge of a network attacker in Section
III, we defined equivalence of input environments (Definition
2) by relating only environments whose high channels receive
packets at the same timestamps. However, while the network
attacker observes incoming packets, they do not observe if or
when the packets are consumed by the program internally. For
this reason, program steps do not need to preserve equivalence
by Definition 2. To relate input environments internally we
define internal equivalence (Definition 14) as equality of
packet sequences on attacker observable channels.

Definition 14 (Internal input environment equivalence up
to level). Two input environments I and I ′ are internally
equivalent up to level ladv, written I ≈∙ladv I

′, if

l ⊑ ladv ⟹ I1(l) = I2(l)

I1 ≈∙ladv I2

Definition 14 is strictly weaker than Definition 2, which we
state as Lemma 3.

Lemma 3 (Network input equivalence implies internal input
equivalence). For any input environments I1, I2, equivalence
by Definition 2 implies equivalence by Definition 14. That is,

I1 ≈ladv I2 ⟹ I1 ≈∙ladv I2
Proof: Immediate from the definitions.

We now present our noninterference lemma for program
configurations (Lemma 4). It says that given a level ladv and
a program configuration that takes a step emitting some event
�, then all configurations equivalent at ladv either take a step,
emitting an equivalent event �′, and are again equivalent at
ladv; or the configuration can be typed with a high pc and has
no observable effects at level ladv.

Lemma 4 (Program step noninterference). Given a level ladv
and a command c and Γ, pc, pc′ such that c is well-formed
w.r.t Γ, pc, pc′, if

⟨c, m1, I1⟩
ts
←←←←←←←→�1 ⟨c

′, m′1, I
′
1⟩

then for any memory m2 such that m1 ≈ladv m2 and input
environment I2 such that I1 ≈∙ladv I2, we have that one of the
following holds

1) either ⟨c, m2, I2⟩
ts
←←←←←←←→�2 ⟨c′, m′2, I

′
2⟩ such that ⌊�1⌋∙ladv =

⌊�2⌋∙ladv and m′1 ≈ladv m
′
2 and I ′1 ≈

∙
ladv

I ′2.
2) or ⌊�1⌋∙ladv = � and there is pc″ such that pc″ ⋢ ladv

and Γ, pc″ ⊢ c ∶ pc′ and m1 ≈ladv m
′
1 and I1 ≈∙ladv I

′
1

We refer the interested reader to the accompanying technical
report for the proof and supporting lemmas.

C. Global configuration
We take the next step towards showing soundness of the

type system by using Lemma 4 to show single-step nonin-
terference of global configurations. Lemma 5 tells us that
for any level ladv and any two equivalent runs, if one run
takes a step producing global event  , then the other run
also takes an equivalent step, or the two runs diverge with
high pc. We do not require that all events emitted after
divergence are unobservable to the adversary. Instead, we
allow runtime events to still be observable. This is intuitively
safe as the runtime behaviour is fully determined by the
program events, and no observable program events may be
emitted after divergence. To simplify reasoning for divergent
runs, we use a configuration with command stop in the second
condition. This configuration serves as an anchor, allowing us
to reason about the observable behaviour of any two equivalent
configurations by showing they behave the same as the stop-
configuration. To satisfy this condition, the configuration must
produce no observable program event or changes to memory
or input environment, and produces output if and only if the
stop-configuration produces equivalent output.
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Lemma 5 (Global step noninterference). Given a level ladv
and a command c and Γ, pc, pc′ such that c is well-formed
w.r.t Γ, pc, pc′, if

⦉⟨c, m1, I1⟩, O1, �, ts⦊ →→(ts∶�1,�1) ⦉⟨c
′, m′1, I

′
1⟩, O

′
1, �

′, ts′⦊

then for any memory m2 such that m1 ≈ladv m2; input
environment I2 such that I1 ≈∙ladv I2; and output environment
O2 such that O1 ≈ladv O2, we have that one of the following
holds
1) either

⦉⟨c, m2, I2⟩, O2, �, ts⦊ →→(ts∶�2,�2) ⦉⟨c
′, m′2, I

′
2⟩, O

′
2, �

′, ts′⦊

such that each of the following hold
a) ⌊�1⌋∙ladv = ⌊�2⌋∙ladv
b) ⌊�1⌋ladv = ⌊�2⌋ladv
c) m′1 ≈ladv m

′
2

d) I ′1 ≈
∙
ladv

I ′2
e) O′1 ≈ladv O

′
2

2) or there is pc″ such that pc″ ⋢ ladv and c is well-formed
w.r.t Γ, pc″, pc′, and such that each of the following hold
a) ⌊�1⌋∙ladv = �
b) m1 ≈ladv m

′
1

c) I1 ≈∙ladv I
′
1

d) � = �′
e) �1 ≠ � if and only if there are �2 and O′2 such that

⌊�1⌋ladv = ⌊�2⌋ladv , O
′
1 ≈ladv O

′
2, and

⦉⟨stop, m2, I2⟩, O2, �, ts⦊
→→(ts∶�,�2) ⦉⟨stop, m2, I2⟩, O

′
2, �, ts

′⦊

We again refer to the accompanying technical report for the
proof.

D. Soundness of security type system
Using the above results, we are now ready to state our

soundness theorem (Theorem 1). It says that any well-typed
program satisfies timing-sensitive, progress-sensitive noninter-
ference (Definition 8).

Theorem 1 (Soundness). Given a typing environment Γ,
two levels pc, pc′, and a program configuration P that is
well-formed w.r.t Γ, pc, pc′, the run ⦉P ,Oinit, �init, 0⦊ →→∗

�
⦉P ′, O′, �′, ts′⦊ satisfies Definition 8.

The proof is by induction in the number of steps and uses
Lemma 5 to infer that if the run emits an event observable
by an internal attacker, then all runs of equivalent program
configurations must as well, hence the internal attacker does
not learn anything. Using Lemma 2 we conclude that the
network attacker equally does not learn anything. The full
proof of Theorem 1 is omitted here and can be found in the
accompanying technical report.

As noted in Section IV, Programs 5, 6, and 7 from Section
I are typeable by the typing rules and hence by Theorem 1 we
obtain a proof that they satisfy Definition 8 and do not leak
by their output behaviour.

V. DISCUSSION

A. Publicly observable traffic
By our chosen strategy and the assumption that network

activity can be eavesdropped, we arrive at a number of restric-
tions on how output channels can be used. Our strategy does
not permit the scheduling of new messages after the program
counter has been raised. Nevertheless, Program 7 in Section
I demonstrates how dynamic scheduling is possible after
receiving input, provided the input is received on a non-secret
channel. This allows lower bandwidth overheads compared
with constant rate padding schemes, by only scheduling traffic
when needed. While it is unsurprising that it is safe to only
schedule as needed while in a low context, this intuitive fact
is difficult to prove correct without a principled, formal model
like we present in this paper.

B. Limitations and future work
In this paper we have opted for simple and explicit packet

scheduling via programmer written commands, allowing us
to use the IFC system to prevent leaks from both message
contents and message presence. Our model and the primitives
presented are not intended as a full solution for preventing
traffic analysis attacks, but rather aim to bring attention to an
as yet unsolved problem, and serve as a step towards providing
practical and provably safe usage of channels susceptible to
eavesdropping. A significant limitation of our model is that
the progress-sensitive nature of the type system makes compo-
sition of programs difficult. A pc-declassification mechanism
would alleviate this issue, but the security impact of allowing
such mechanism must be fully understood. To focus our
model, we have deliberately not included a pc-declassification
primitive in the language.
Other strategies for setting up packet schedules may be vi-

able. In particular, we note that patterns in publicly observable
input traffic may be used when deciding the shape of output
traffic. However, we note that for receives with public blocking
behaviour, the employed strategy should not incur significant
overheads or hinder the ability to reply. As such, static pre-
processing of a target program to determine a packet schedule
is not viable.

VI. RELATED WORK

Sabelfeld and Mantel [30] also consider the problem of
sending secret messages over publicly observable channels
as part of a distributed program. They consider concurrent
programs that communicate over low channels that are fully
observable; encrypted channels where the number of messages
is observable, but size and contents is not; and high channels
where both message presence and contents are secret. They
define a timing-sensitive security definition using strong low-
bisimulation, requiring that the number of encrypted messages
sent is the same between any two related runs in lockstep. The
channels they consider model communication with specific
endpoints at nodes – rather than with nodes themselves – and
they do not contain dummy messages. Consequently, the block-
ing behaviour of receives on encrypted channels is public,
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and encrypted channels in their work do not correspond with
non-public channels of our work whose blocking behaviour is
non-public. The authors discuss the practical implications of
different communication primitives. They argue that receives
on channels that exhibit secret blocking behaviour is not
secure and non-blocking receives should be used instead, while
receives on channels that exhibit public blocking behaviour
should use blocking receives to prevent busy waiting.

Zhang et al. [36] propose a general language-based mech-
anism for controlling timing channels based on the idea
of predictive migitation [6]. While both their approach and
ours rely on the idea of scheduling observable events, they
are orthogonal. A distinguishing property of the predictive
mitigation is that because of its generality the only allowed
modification to program semantics is delaying of the messages.
In contrast, our approach – where we focus on the network
attacker – allows us to use dummy messages, preventing the
delays caused by mispredictions.

As noted in Section V, a pc-declassification mechanism
could be used to alleviate some of the restrictions imposed by
SELENE’s progress-sensitive type system. Bay and Askarov
[9] give a formal condition on how much attacker knowledge
is allowed to change as a result of pc-declassification by
bounding it using the so-called progress-knowledge. We leave
adapting their approach to SELENE as future work. Vassena
et al. [33] propose a dynamic language-level IFC system that
supports deterministic parallel thread execution. Such a system
could retain a public context thread, potentially mitigating the
need for explicit pc-declassification.
Oblivious programming languages such as ObliVM [24] and

Obliv-C [35] allow programmers to write protocols for secure
computations, where multiple parties can perform computation
collaboratively without revealing their input via produced
trace, e.g. instructions, memory accesses, and values of public
variables. To achieve security, such languages commonly
simulate the execution of non-chosen branches in conditional
statements and publicly bound and pad the number of loop iter-
ations and the number of bits needed to represent secret values.
While the goal of oblivious programming languages overlaps
with ours at a high level, care is needed for adapting the
techniques to our model. Generally speaking, these languages
do not allow loop guards or blocking behaviour to be non-
public. Our model allows the size of network messages to be
kept secret by sending them as a series of (potentially dummy)
packets. Consequently, the blocking behaviour of the receive
primitive for non-public channels in SELENE is inherently
non-public. A solution used in the oblivious approach is to tag
values with a public, conservative upper bound on their size.
This gives weaker confidentiality, but if acceptable appears a
viable solution for the problem we discuss in this paper and
we leave application of oblivious programming techniques as
future work.

Previous work has examined the possibility of traffic anal-
ysis attacks revealing sensitive user information and actions
across various settings.

Browsers: Chen et al. [11] and Miller et al. [26] both
consider the traffic patterns generated by user interactions on
webpages. Miller et al. present an attack against the HTTPS
deployments of industry-leading websites spanning multiple
sectors. Their attack was able to identify pages within a
site with high accuracy, exposing personal details including
medical conditions and financial affairs. They propose a de-
fence mechanism that pads contiguous bursts of traffic up to
per-website, predefined thresholds. Their analysis shows that
the proposed defence mechanism outperforms site-agnostic
approaches that pad the sizes of all packets to global, nearest
threshold values. Chen et al. find that the potential for traffic
analysis attacks is exacerbated by design features for dynamic,
reactive websites such as AJAX GUI widgets, which often
generate distinctive traffic in response to user interactions.
Cherubin et al. [12] consider website fingerprinting defences

at the application layer and introduce ALPaCA, a server side
defence for use with Tor. ALPaCA works by transforming site
content to conform to average site content, as analysed across
multiple Tor sites. Their analysis shows that ALPaCA reduces
website fingerprinting accuracy from 69.6% to 10%.
Phones and apps: Conti et al. [15] and Wang et al. [34]

both consider attacks on users of Android smartphones. Conti
et al. present a machine learning assisted traffic analysis attack
that infers user actions in apps with high precision and high
recall, e.g., opening a profile page on Facebook or posting a
message on Twitter. Wang et al. present a packet level attack on
encrypted Android traffic. By collecting and analysing a small
amount of wireless traffic, they are able to determine which
apps smartphone users are using. Their analysis shows that
apps are more susceptible to traffic analysis attacks than online
services accessed over browsers, as apps tend to generate more
distinct patterns of traffic.
Bahramali et al. [7] show that also instant messaging clients

are susceptible to traffic analysis attacks despite using state-
of-the-art encryption. They demonstrate an attack capable of
identifying members and administrators of IM channels with
high accuracy, using only low-cost traffic analysis techniques.
They attribute this to the fact that major IM operators do not
use mechanisms for obfuscating genuine traffic, arguing their
reluctance is due to the performance and usability impact of
deploying such techniques.
In the home: Zhang et al. [37] present an attack for inferring

user activities by eavesdropping on WLAN traffic. They con-
sider online activities such as web browsing, chatting, gaming,
and watching videos. They use a hierarchical classification
system based on machine learning algorithms and show that
their system can distinguish different online applications with
roughly 80% accuracy when given 5 seconds of traffic, and
roughly 90% accuracy when given 1 minute of traffic.
Apthorpe et al. [1] consider home IoT devices and attacks

inferring when a device is used, thereby revealing sensitive
user information such as sleep patterns and when the user
is home. They introduce stochastic traffic padding, which
decreases attacker confidence by uniformly shaping upload and
download traffic during user activities, and injecting equivalent
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traffic patterns at random times to hide when the device is in
use.

VII. CONCLUSION

In this paper we consider language-based mitigation of
traffic analysis attacks. We observe four traits on messages
sent that may leak secret information, namely presence, re-
cipient, size, and time. This observation informed the de-
sign of SELENE, a small imperative language for interactive
programs. The type system of SELENE enforces principled,
provably secure communication over channels where packets
are publicly observable. The key insight of the language is a
novel primitive that provides programmatic control over traffic
shaping thereby allowing for reduced overheads in latency and
bandwidth compared with black box techniques. We give a
formal, timing-sensitive, progress-sensitive security condition
based on the knowledge-based approach and prove our type
system sound. We believe that our model faithfully captures
online communication constraints, and that our results con-
stitute a step towards practical, secure online communication.
We believe the security risks of traffic analysis attacks against
confidentiality are significant and that work on language-based
information flow for interactive programs must be mindful of
the assumptions being made about the security of commu-
nications channels. We welcome and encourage future work
to explore language-based techniques for providing strong
security guarantees against traffic analysis attacks.
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